
Morovia Barcode DLL 4.0
Reference Manual

Morovia Barcode DLL 4.0 Reference Manual

Copyright © 2006, 2009, 2021 Morovia Corporation. All rights reserved.

Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless
otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the
user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Morovia Corporation.

Morovia may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in
this document. Except as expressly provided in any written license agreement from Morovia, the furnishing of this document does not
give you any license to these patents, trademarks, copyrights, or other intellectual property.

Morovia is a trademark of Morovia Corporation. Other product and company names mentioned herein may be the trademarks of their
respective owners.

Publication date: July 16, 2021
Revision: 11544

Technical Support
Phone: (905) 752-0226
Fax: (905) 752-0355
Email: support@morovia.com
Web: http://www.morovia.com

For more information about Morovia products, visit http://www.morovia.com.

Table of Contents
1. Overview ... 1
2. System Requirements .. 3
3. Specification ... 5

3.1. Package Contents ... 5
3.2. Symbologies Supported .. 5

4. Licensing .. 7
5. Fundamentals ... 9

5.1. Design Mode ... 9
5.2. Zooming .. 9
5.3. Working Area .. 10

5.3.1. Bounding Borders .. 10
5.3.2. Symbol Margins ... 11
5.3.3. Symbol Area .. 11

5.4. Barcode Glossary .. 12
6. Working with Low Resolution Devices .. 13

6.1. Problem ... 14
6.2. Magic Numbers ... 14
6.3. Solution ... 15
6.4. Transferring Images .. 15

7. Programming Interface .. 17
7.1. General .. 17
7.2. Creating a Barcode Object ... 17
7.3. Modifying Properties .. 17
7.4. Loading/Saving Barcode Object ... 18
7.5. Exporting images ... 18
7.6. Destroying the object .. 18
7.7. Erorr Handling ... 18
7.8. Concurrency Issues .. 18
7.9. Data Type Issues .. 18

7.9.1. Boolean Type ... 19
7.9.2. String Type .. 19

7.10. Using Barcode DLL in a .Net Program ... 19
8. Barcode Object Properties and Methods Reference .. 21

8.1. General .. 21
8.1.1. Properties .. 21
8.1.2. Methods .. 23
8.1.3. Deprecated Properties .. 23

8.2. AutoLabelSize Property .. 25
8.3. AutoSize Property .. 26
8.4. BackColor, ForeColor Properties .. 27
8.5. BarHeight Property .. 28
8.6. BearerBars Property .. 29
8.7. BorderColor Property ... 30
8.8. BorderStyle Property .. 31
8.9. BorderWidth Property .. 32
8.10. Code25OptionalCheckDigit Property .. 33
8.11. Code39OptionalCheckDigit Property ... 34

iv TABLE OF CONTENTS

8.12. Code39StartStopChars Property ... 35
8.13. Comment Property ... 36
8.14. CommentAlignment Property .. 37
8.15. CommentFont Property ... 38
8.16. CommentMarginTop, CommentMarginBottom, CommentMarginLeft, CommentMarginRight
Properties ... 39
8.17. CommentOnTop Property ... 40
8.18. DataMatrixModuleSize Property .. 41
8.19. DataMatrixTargetSizeID Property .. 42
8.20. Font Property ... 44
8.21. I2of5OptionalCheckDigit Property ... 45
8.22. LabelWidth, LabelHeight Properties .. 46
8.23. MaxicodeClass Property .. 47
8.24. MaxicodeMode Property ... 48
8.25. MaxicodeCountryCode Property .. 49
8.26. MaxicodeZipCode Property ... 50
8.27. Measurement Property .. 51
8.28. Message Property ... 52
8.29. NarrowBarWidth Property .. 53
8.30. NarrowToWideRatio Property ... 54
8.31. PDFAspectRatio Property .. 55
8.32. PDFMaxCols Property .. 56
8.33. PDFMaxRows Property ... 57
8.34. PDFModuleHeight Property .. 58
8.35. PDFModuleWidth Property ... 59
8.36. PDFSecurityLevel Property .. 60
8.37. PDFTruncatedSymbol Property .. 61
8.38. Picture Property ... 62
8.39. QuietZones Property ... 63
8.40. RasterImageResolution Property .. 64
8.41. Rotation Property ... 65
8.42. ShowCheckDigit Property ... 66
8.43. ShowComment Property ... 67
8.44. ShowHRText Property .. 68
8.45. Symbology Property ... 69
8.46. SymbolMarginTop, SymbolMarginBottom, SymbolMarginLeft, SymbolMarginRight
Properties ... 71
8.47. TexAlignment Property ... 72
8.48. TextOnTop Property .. 74
8.49. UccEanOptionalCheckDigit Property ... 75
8.50. ZoomRatio Property ... 76
8.51. About Method .. 77
8.52. ExportImage Method .. 78
8.53. Load Method .. 80
8.54. Save Method .. 81

9. Error Handling ... 83
9.1. Error Codes ... 83

10. Barcode Technologies .. 87
10.1. Introduction ... 87

10.2. Code 39 .. 88
10.3. Code 39 Full ASCII ... 89
10.4. Code 39 HIBC .. 89
10.5. Codabar ... 90
10.6. Code 93 .. 90
10.7. MSI/Plessey, Code 25 and Code11 .. 90
10.8. UPC-A,UPC-E and UPC Supplements .. 91
10.9. EAN-13, EAN-8 and EAN Supplements ... 92
10.10. ISBN/Bookland ... 93
10.11. Code 128 .. 94

10.11.1. How Barcode DLL Implements the Code128 .. 94
10.11.2. Tilde Codes .. 94

10.12. UCC/EAN-128 .. 96
10.12.1. Introduction ... 96
10.12.2. How Barcode DLL Implements UCC/EAN-128 ... 96
10.12.3. Auto Check Digit ... 99
10.12.4. Input Format .. 99
10.12.5. Validation ... 100
10.12.6. Non-standard Application ... 100

10.13. DataBar Symbology Family .. 102
10.13.1. What is GTIN? .. 103
10.13.2. Barcode Height ... 103
10.13.3. Human Readable Text ... 103
10.13.4. DataBar Expanded and DataBar Expanded Stacked ... 104

10.14. Interleaved 2 of 5 (ITF25) ... 105
10.15. POSTNET ... 106
10.16. PDF 417 .. 107

10.16.1. Security Level ... 107
10.16.2. Size Control .. 107
10.16.3. Input Format .. 108
10.16.4. Truncated PDF .. 108
10.16.5. Global Label Identification (GLI) .. 108
10.16.6. Macro PDF417 .. 109

10.17. Data Matrix ... 111
10.17.1. Enhanced Feature Support .. 111
10.17.2. Size Control .. 111
10.17.3. Module Size ... 112
10.17.4. Input Format .. 113
10.17.5. Macro 5 and 6 .. 113
10.17.6. Extended Channel Interpretation (ECI) ... 113
10.17.7. Structural Append (SA) ... 114

10.18. MaxiCode ... 115
10.18.1. Barcode DLL implementation .. 115
10.18.2. Message Structure ... 115
10.18.3. Input Format .. 116
10.18.4. Extended Channel Interpretation (ECI) ... 117
10.18.5. Structural Append (SA) ... 117

11. Technical Support .. 119
A. Component Software License Agreement ... 121

vi TABLE OF CONTENTS

Glossary ... 125
Index .. 129

List of Figures
5.1. Zooming Effect .. 10
5.2. Anatomy Of a Label ... 10
5.3. Symbol Margins ... 11
10.1. Example PDF417 Barcode .. 107
10.2. Truncated PDF417 Barcode .. 108
10.3. Example Data Matrix Barcode ... 111
10.4. Example MaxiCode Barcode .. 115

List of Tables
3.1. Barcode Formats Supported by Barcode DLL 4.0 ... 5
6.1. Typical Low Resolution Devices .. 13
6.2. Pixel Size Under Typical Resolutions ... 13
6.3. Magic Numbers ... 14
8.1. List of Barcode Object Properties ... 21
8.2. List of Barcode Object Methods ... 23
8.3. List of Deprecated Properties .. 23
8.4. Border Styles .. 31
8.5. CommentAlignment Options .. 37
8.6. DataMatrixTargetSizeID options .. 42
8.7. Measurement Unit Options ... 51
8.8. Rotation Options .. 65
8.9. Symbology Options .. 69
8.10. TexAlignment Options .. 72
8.11. PersistFormat Options (Load method) .. 80
8.12. PersistFormat Options (Save method) .. 81
9.1. Error Codes (Operational) ... 83
9.2. Error Codes (Encoding) .. 84
10.1. Symbologies Supported by Barcode DLL ... 87
10.2. Examples of UPC-A, UPC-E and Supplement ... 91
10.3. Examples of EAN-13, EAN-8 and Supplement: ... 92
10.4. List of Known AIs .. 96
10.5. GS1 DataBar Family .. 102
10.6. Optional Fields in Macro PDF417 ... 109
10.7. Data Matrix Symbol Sizes .. 111
10.8. Macro 5 and 6 .. 113
10.9. MaxiCode Modes .. 115
10.10. Tilde Codes (MaxiCode) .. 116

Chapter 1. Overview
Welcome to Morovia Barcode DLL! Morovia Barcode DLL empowers developers to quickly build
comprehensive Windows-based barcode applications. Using Morovia Barcode DLL, you can add barcode
printing functionality to an existing application in just a couple of hours.
You can use Morovia Barcode DLL to build applications for both large corporations and small businesses.
Typical applications include:

• Retail Packaging
• Shipping
• Labeling Software
• Order Tracking
• Banking
• Postal Applications
• Inventory Control
• Asset Tracking
• Tool Tracking
• Document Tracking

Morovia Barcode DLL supports most linear barcode formats, including Code 39, UPC-A, UPC-E, EAN-13,
EAN-8, Code 93, Code128, EAN-128, Codabar, POSTNET, Royal Mail, HIBC, Interleaved 2 of 5 GS1 DataBar, GS1
DataBar Truncated, GS1 DataBar Limited, GS1 DataBar Stacked, GS1 DataBar Stacked Omnidirectional GS1 DataBar
Expanded and GS1 DataBar Expanded Stacked. Morovia Barcode DLL also supports three 2D barcode formats,
such as PDF417, Data matrix and MaxiCode.
Unlike other products that create low quality bitmaps, Morovia Barcode DLL draws itself using high-
resolution metafile graphics that are device-independent 1 and adapt to printing devices supported by
Windows. The control also exports to a variety of graphics formats including BMP, JPEG, GIF, PNG, TIF,
WMF and EMF.
The Barcode DLL provides methods to save itself into a file in binary or XML text format. With XML, data can
be easily exchanged among computers. For example, you can store all the properties in a database, transmit
them over Internet, and load at a later time.
Best of all, this component does not have dependency on any other third party DLLs when running on
Windows 2000 or above. Only one file needs to be included with your installation package - MrvBarDLL.dll.
There are no run time dependencies or additional files to be included.
Barcode DLL can be used in a variety of ways. In the software package we include examples for programming
environments such as Visual C++ and .Net. Because the DLL API is exported using standard Windows
DLL interface, we expect that there is no problems when working in other environments, such as Perl,
PowerBuilder and Pascal.
Version 4 includes both 32-bit and 64-bit binaries. The interfaces remain the same as the previous version 3.

1Special handling is required for working with low-resolution devices to produce high-quality barcodes.

Chapter 2. System Requirements
Windows 7 is the minimum required Windows operating system to run Morovia Barcode DLL. It does not
run on Windows 98, ME and Windows NT. Morovia will not make changes to the program to accommodate
those legacy systems.
Morovia Barcode DLL does not utilize any third party DLLs. Nor does it use any registry settings.

Chapter 3. Specification
Morovia Barcode DLL has been tested on many environments, such as Visual Basic and Visual C++. Standard
header files for C/C++ compilers are included. Other environments, such as C# and Powerbuilder, you
need to import/declare the function prototype first. Refer to language manual on how to call a DLL in your
programming environment.

3.1. Package Contents
The Barcode DLL package contains the following contents:

• Barcode DLL - MrvBarDLL.dll.
• Import library MrvBarDLL.lib for C/C++ compilers
• Reference manual, which you are reading on
• Release Notes
• VC15 (Visual Studio 2015) sample
• Visual Studio 2015 .Net sample (C#)

3.2. Symbologies Supported
Morovia Barcode DLL 4.0 supports the following barcode formats:

Table 3.1. Barcode Formats Supported by Barcode DLL 4.0

Code 11
Code 25
Codabar
Code 39
HIBC
Code 39 Extended
Code 93
MSI/Plessey
Interleaved 2 of 5
GS1 DataBar

UPC-A
UPC-E
EAN-13
EAN-8
Bookland
Postnet
Planet
Royal Mail
GS1 DataBar Truncated

Code 128
GS1 128a

Telepen
Telepen Numeric
Data Matrix
PDF417
MaxiCode
GS1 DataBar Limited
GS1 DataBar Stacked
GS1 DataBar Stacked
Omnidirectional
GS1 DataBar Expanded
GS1 DataBar Expanded Stacked

aPreviously known as UCC/EAN-128

Chapter 4. Licensing
Our license terms are included at the end of this manual. For the latest pricing, visit https://
www.morovia.com/products.html.
Barcode DLL is developed to assist software developers to add barcode printing functionality into their
custom software. As a result, only developer licenses are available. Each developer license allows one
developer to develop software incorporating the DLL and distribute the DLL bundled with custom software,
up to 10,000 copies.
Each developer must have his/her own license to work with Barcode DLL. The full version and the trial
version share the same binary file. The barcode object is created without watermark when valid License To
and Registration Code are passed to the CreateBarcodeObject function.

https://www.morovia.com/products.html
https://www.morovia.com/products.html

Chapter 5. Fundamentals
The core component within Morovia Barcode DLL is a powerful, versatile control, also referred as Barcode
Object throughout this manual. This control does not only create barcode image, but also human readable
text and comment. It allows flexible layout of these components. This chapter gets you familiar with the basic
concepts necessary to work with the control.

5.1. Design Mode
To simplify application design, this manual categorizes the control usage into two design modes: barcode
design mode and label design mode. Barcode design mode is for those whose tasks emphasize on the
barcode image rather than the “label”. Under barcode design mode, the size of the working area is not fixed
and can expand or shrink necessarily to hold the complete barcode label, including quiet zones, comments and
margins. On the contrary, under label design mode the working area is predecided and will not expand or
shrink. The barcode portion can expand or shrink but it will not impact the overall label space.

The property AutoLabelSize determines the design mode. If AutoLabelSize is TRUE, you are working under
the barcode design mode, where the label size is not fixed. If more data is encoded into the barcode, or you
add more text into the comment, the overall size increases. Under barcode design mode, the properties
LabelWidth and LabelHeight are read only and you can not change them; rather, you can increase or decrease
the overall drawing area by changing the margin, barcode data, or comment size.

On the other side, when AutoLabelSize is FALSE, the working area is pre-determined by the properties
LabelWidth and LabelHeight. You can modify the natural size by modifying these two properties. Any
drawings outside the predefined area are clipped.

5.2. Zooming
In most cases you probably do not need the zooming feature. We highly recommend that you make sure
that the ZoomRatio equals to 1.0 when you print the barcode. This zooming feature is provided for creating
comprehensive labeling applications.

To avoid confusion, this manual defines two sizes here: natural size and display size. The natural size is the
size of the control itself without scaling. The display size is the natural size multiplies the zoom ratio.

There are two types of zooming: programmed and interactive. In the first scenario, the control size is
determined by the actual size and ZoomRatio. The program changes the control size by programmatically
modifying the ZoomRatio. In the latter case, the user drags on the tracker box to the size desired, and
the object responds by drawing itself to the maximum extent in the box specified. Although you can
switch from one to the other zooming mode, you can not have both at the same time. The zoom mode is
determined by property AutoSize: if this property is set to TRUE, the control determines the size and you can
programmatically zoom the control by setting the ZoomRatio property to an appropriate value. If AutoSize
is set to FALSE, the container takes the charge and the control redraws itself every time the container's size
changes (with several extra lines of code you will be able to achieve the interactive dragging effect). Under the
interactive mode you can not set ZoomRatio property; it becomes read-only.

10 CHAPTER 5 FUNDAMENTALS

Figure 5.1. Zooming Effect

5.3. Working Area
There are a couple of elements appearing in the working area - barcode, human readable, margins and
comment. Since the working area includes not only the barcode image, in this manual we use the term “label”
or “the working area” to refer to the whole drawing.
The whole drawing (label) consists of three major components, as you can see from the illustration below: (1)
the bounding borders surrounding the label; (2) symbol margins surrounding the symbol area; (3) the symbol
area, which includes the barcode, human readable and the comment. Furthermore, the whole symbol area can
be divided into two parts: (1) the barcode. A barcode can also have a human readable text. You can add extra
white spaces surrounding the barcode, a.k.a. Quiet Zones. The human readable text can appear on the top of
the barcode, or on the bottom, or does not appear at all. (2) the comment. A comment consists of one or more
text paragraphs. Same as the human readable text, the comment can be placed on the top, on the bottom of
the image, or does not appear at all.

Figure 5.2. Anatomy Of a Label

5.3.1. Bounding Borders
Three properties control the appearance of the borders: BorderColor, BorderStyle and BorderWidth. To turn
off the border, set BorderWidth to 0 or BorderStyle to mbxBorderStyleNone. The BorderWidth property does
not affect the overall size. The border aligns its outer edge to the boundary of the working area.

CHAPTER 5 FUNDAMENTALS 11

The borders are turned off by default in Barcode DLL 4.0.

5.3.2. Symbol Margins
The margin properties control the marginal space around the symbol area (barcode and comment). There
are four symbol margin properties: SymbolMarginLeft, SymbolMarginRight, SymbolMarginTop and
SymbolMarginBottom, which define the margin spaces in the four directions respectively.
By default, Barcode DLL adds 100 mils (2.54 mm) margins surrounding the symbol. To modify the symbol
margins, set the four symbol margin properties to appropriate values.

Figure 5.3. Symbol Margins

5.3.3. Symbol Area
The symbol area consists of two components: barcode and comment. The barcode element comprises a barcode
image, an optional human readable text and optional quiet zones. The human readable can be placed on the
top or the bottom of the barcode element, or does not display at all.
The comment element contains one or more text paragraphs.

5.3.3.1. Barcode Element
The barcode part is always placed in the center of the working area (if there is no rotation at all).
The vertical position is determined by two comment margin properties: CommentMarginTop and
CommentMarginBottom. If the comment is placed on top of the barcode area, the distance from the bottom
edge of the comment to the top edge of the barcode is CommentMarginBottom; otherwise the top edge of the
barcode is the top boundary of the symbol. Similar calculation applies to the case when comment is placed on
the bottom.

5.3.3.2. Comment Element
The vertical position of the comment depends on the CommentOnTop property. When this property is
set to TRUE, the distance from the top edge of the comment to the bottom of the symbol is expressed in
CommentMarginTop. The distance from the bottom edge of the comment box to the top of the barcode is
expressed in CommentMarginBottom.
The design mode affects the horizontal placement of the comment element. Under label design mode,
where the label size (working area) is fixed regardless of the symbology and encoding data, the property
CommentMarginLeft measures the distance from the left edge of the symbol to the left edge of the comment

12 CHAPTER 5 FUNDAMENTALS

box. The CommentMarginRight property measures the distance from the right edge of the symbol to the
right edge of the comment box. The calculation is somehow different under barcode design mode: Under
barcode design mode, the CommentMarginLeft measures the distance from the left edge of the comment text
box to the left edge of the barcode, and CommentMarginRight measures the distance from the right edge of
the barcode to the right edge of the comment box.

5.4. Barcode Glossary
A barcode consists of two elements. In linear symbologies, the dark element is called Bar, and the white
element is called Space. In two dimensional symbologies, both elements are referred as module - the dark
(black) module and the light (white) module.
Most linear symbologies allow 1 or 2 widths. In the first scenario, the width of an element could be 2, 3 or
4 times of the width of the narrowest element. In the second scenario, two widths are defined, one for the
wide elements and one for the narrow elements. The width of the wide element divided by the width of the
narrow element is called NarrowToWideRatio. In both cases, the overall barcode length achievable depends
on how small the width of the narrowest element can go. The width of the narrowest element is also referred
as X dimension (sometimes abbreviated as “X Dim”). In Barcode DLL you can set the X dimension through
property NarrowBarWidth.
The length of the X dimension is usually very small. The industry measures the X dimension in 1/1000 inch
units, called mils. A mil equals to 1/1000 inch. Nowadays millimeters are also used in some cases. Due to
the legacy that most barcodes have so far been produced by specialized barcode printers and most of those
barcode printers have a low resolution at 203-dpi, the X dimension is often integral times of the pixel width
on a 203-dpi printer - a typical requirement is 15 mils (the width of three printer pixels on a 203 dpi printer).
The smallest width that a barcode reader can distinguish is called scanner resolution. Today, most
commercial scanners have a resolution around 10 mils, meaning that they won't be able to read the barcodes
with X dimension at 5 mils. High resolution scanners can go as low as 3~5 mils.
Barcode DLL supports two measurement units: mils and high metric (1/1000 cm). The user can select
whichever convenient to use. On the other side, although you can set whatever values you desire, you may
not be able to achieve the accuracy because of the limitations of the device. You can not print on 1.5 pixels. If
you plan to create barcodes on low-resolution devices, such as fax transmission, screen or thermal printers,
refer to Chapter 6, Working with Low Resolution Devices.

Chapter 6. Working with Low Resolution
Devices
The top priority when making barcode images is to make sure that the barcode is readable. Although it seems
quite obvious, it is nevertheless not a trivial task, especially when working with a low-resolution device. A
low-resolution device is a printer or any target device that has a resolution lower than 300 dpi. A typical
example is G3 fax transmission, which has a resolution only at 200 dpi. The computer display has a resolution
of 96 dpi. Many thermal transfer printers also fall into this category, with resolution as low as 203 dpi.

Table 6.1. Typical Low Resolution Devices

Device Resolution

Computer display 96 dpi

G3 Fax machine 200 dpi

Thermal Transfer Printer 203 dpi

Dot matrix printer 150 dpi, 240 dpi, 300 dpi

Why does device resolution become an issue? Modern computer graphics technology is based on a
fundamental assumption that the program can address any logical units, being 1/100 inch per unit, or 1/1000
inch per unit. In this way, computer graphics simplifies the drawing process and makes the drawing data
more portable. In practice, most devices are raster and the smallest unit they can address is a pixel. You can
not print on 1.5 pixels. Even worse, the size of pixel does not match the English or metric unit system used in
our daily lives. Let's take a look at the pixel size measured in mils and mm:

Table 6.2. Pixel Size Under Typical Resolutions

dpi (dots per inch) size in mils size in mm

96 10.42 0.265

150 6.67 0.169

203 4.93 0.125

240 4.17 0.106

300 3.33 0.085

600 1.67 0.042

As you can see, the size of pixel is variable from device to device. For a 600-dpi laser printer, there are 600
pixels in an inch. The same number of pixels occupy 6.25 inches on a computer screen, much longer than the
one on the printer. To eliminate the tedious work converting the units back and force, computer graphic layer
allows drawing commands to be specified with lengths in a logical unit. You could use pixel based drawing,
but naturally most of software choose a mapping unit in mils (1/1000th inch) or 0.01 millimeters. This makes
programming a lot easier, because the software does not need to address on the pixel level and the drawings
are portable from device to device. Unfortunately, this approach works under a major assumption - the
actual resolution does not impact the quality of the drawing. This assumption holds true for text renderings

14 CHAPTER 6 WORKING WITH LOW RESOLUTION DEVICES

and pictures, but not for barcode printing which requires great assurance on the constant width of each
element. Converting from logical units to pixels usually results in rounding errors. When rounding errors are
accumulated all the way, some elements will no longer keep the required constant widths, resulting in a low
quality barcode.

6.1. Problem
To make high quality barcodes, several work-arounds have been adopted by barcoding software:

• Requiring the use of high-resolution printers
• Requiring use of Magic Numbers as NarrowBarWidth
• Forcing the use of pixels as length units

The pixel size of a high resolution device is too small to be noticeable by even high resolution scanners. The
overall accumulation of rounding errors is small. The barcode printed is also very accurate - meaning that you
can always achieve the size you want on a high resolution printer.
Another way is to make the width value closest to integral times of a pixel length. Our testing found that
this approach worked very well when the bar code element width occupying at least 2 pixels. Based on this
theory, when you carefully select the element width value you can still achieve a grade A barcode on a low-
resolution printer.
Some software only work with specific barcode printers. They work around the issue by allowing user to
enter the length values in the number of pixels. The problem with this approach is that the barcode data is
only meaningful to certain category of printers. The barcode data is not portable.

6.2. Magic Numbers
By making the logical units closest to the integral times of the width of a pixel, we calculate the magic
numbers as shown in the table below:

Table 6.3. Magic Numbers

dpi (dots per inch) pixel size in
mils

magic numbers (in mils)

96 10.42 21, 31

150 6.67 14, 20

203 4.93 10, 15

240 4.17 8, 13, 17

300 3.33 7, 10, 14

600 1.67 7, 9, 10, 12

From the table above, the smallest width achievable on a 203-dpi thermal printer is 10 mils. On a low-
resolution printer you can not achieve high precision - the achievable smallest width on a 203 dpi thermal
printer is 5 mils and on the computer screen it is around 10 mils.
When you create barcodes under the screen resolution (96 dpi), you end up with a big X dimension value -
21 mils. As previously analyzed, 1X does not work very well because the accumulated rounding errors may
result in a complete loss of an element.

CHAPTER 6 WORKING WITH LOW RESOLUTION DEVICES 15

6.3. Solution
To solve the barcode quality issue while retainig maximum portability, our Barcode DLL aligns all lengths to
the edge of pixels. Moreover, the drawings are now in the unit of pixels, instead of any logical units. Doing
this ensures you get a quality barcode even on low resolution devices when you are drawing a width at 1-
pixel's width level.
However, this approach brings some side effects. Due to the priority to ensure the constant width, the overall
length achieved may vary from device to device. You may find that the same barcode prints much bigger
or smaller on a thermal printer than on a laser printer. You have to give up the precision to gain the quality.
Secondly, the pixel level drawing only happens when ZoomRatio=1.
As you can see from the table, lengths of the barcodes are almost the same on high resolution printers (300
dpi and 600 dpi). But on low-resolution printers, it varies greatly, especially on the computer display.
During the rasterization process, the printer driver is consulted to get the best rendition. Text character
usually appear bigger than their renditions on laser printers, and some printer models have problem
rendering bold fonts. We recommend you do more testing when working on these low-resolution devices,
and stick to one configuration which meets the quality and performance.
On low resolution devices, the choices for the actual NarrowBarWidth are limited, especially when we want
the barcode as small as possible. The program calculates the NarrowBarWidth based on the resolution of
the target device. Although you can specify different values, you may not get different results because the
program only draws bars/spaces to the pixel edge. For example, when Barcode DLL draws on a computer
display, specifying NarrowBarWidth as 8 mils renders the same barcode as with NarrowBarWidth set to 14 mils.
Both lengths turn into 1 pixel at the time of rendering.
With the overall barcode length varying from device to device, the overall layout may look different too.

6.4. Transferring Images
Graphics exchange file formats are invented to allow the drawings to be transferred from one program to
another. Fundamentally there are two categories: vector graphics format and raster graphics format. A vector
graphics file stores drawing commands. On the target device, the drawing commands are replayed.
Many people think that the image files produced under high resolutions will have the best quality. This is
not correct. When an image produced based on high resolution is renderred on a low resolution printer, the
render program has to scale down all lengths. If it is a raster image, several adjacent pixels are compressed
into one pixel. If it is a vector image, the lengths are divided by a ratio and rounded to the nearest integer.
This transformation process likely causes rounding errors. When the bar width is small, the widths of
elements become non-constant, and some drawings may be lost during the compression process.
Transferring images produced based on low resolution to a high resolution device may also have problems,
but to a lesser degree. First, if two resolutions are compatible (for example 300 -> 600) there is no distortion
or loss at all. And there are no rounding errors converting the logical units to the device units in the second
device. Secondly, even if the two resolutions are not compatible (96 dpi -> 600 dpi), the pixel size in the second
device is too small that one more or less pixel won't affect the barcode quality at all. And most of important,
narrow elements won't be lost when scaled up.
As a result, you should pay special attention when you have to transfer images from one to another.
Obviously, the best approach is to produce images under a resolution that matches the target printer. Barcode
DLL automatically rounds all length values to the pixel level.
Needlessly to say, you may not have the control over the process under some circumstances. We list several
common cases below:

16 CHAPTER 6 WORKING WITH LOW RESOLUTION DEVICES

1. Exporting raster images
Raster images (JPEG, GIF, TIF, PNG and BMP) can be exported through ExportImage method.
During the export process, drawing commands are converted into an array of color information.
The resolution used during the transform is specified in RasterImageResolution. You should set
RasterImageResolution the same value as the resolution of your target printer.

2. Exporting EMF images
EMF is the recommended format for exporting. It produces a small size file. During the transform
process, the default printer driver is consulted for the pixel size. As a result, you should set the target
printer default when exporting EMF files. There are two methods to export EMF images. The first one
is to call ExportImage method of the control. The second one is to get Picture property and retrieve the
handle.

3. Exporting WMF images
WMF is a vector graphics format; however it does not contain frame size information. Barcode DLL
uses 1440dpi as the reference resolution when rendering WMF images. Normally you won't encounter
readablity issues when working on high resolution devices such as laser printers.

4. Creating barcodes at web server side
It is tough to create barcode images at web server and send to the client browser. The problem is that
most web browsers only support raster image formats at screen resolution. You can use either screen
resolution (96 dpi), or the resolution of target printer, however, in the latter case you will need to
calcualte the screen size by youself.

5. Creating barcodes in Microsoft Office
Microsoft Office programs either retrieve either WMF handles, or EMF handles at 1440 dpi. As a result
you will need a high-resolution printer to render the image without loss.

It should be noted that some image processing programs have no concept of "resolution". Although they
support vector graphics format, however they simply raster the image into pixels at screen resolution. As a
result, if the original images were produced based on a higher resolution, the resulted barcodes usually have
very low quality. Do not use those programs to edit barcode images exported from Barcode DLL.

Chapter 7. Programming Interface

7.1. General
Although DLL only allows exporting plain “C” functions, object-oriented methodology is employed during
the interface design. All functions operate on a special object called the barcode object. The object is
identified by a 32-bit interger type called HANDLE. A HANDLE is defined as a void* pointer in C language,
and a Long in classic Visual Basic.
A typical application creates the barcode object through function CreateBarcodeObject and retrieves the
handle to the object. Subsequently it calls various functions to manipulate the object properties. The function
 mbxExportImage is used to retrieve the barcode image renderings. After the application finishes using the
object, it calls the function DestroyBarcodeObject to release all resources allocted to the object.

7.2. Creating a Barcode Object
A barcode object is created through function CreateBarcodeObject, which has the following prototype:
HANDLE CreateBarcodeObject(const char* lpszLicenseTo,
 const char* lpszRegCode);

The CreateBarcodeObject function creates a barcode object using default properties and returns a number
that uniquely identifies the object (handle). Through the handle, the client application modifies the object
properties, persists the object to a disk file, and retrieves barcode rendering in a variety of image formats.
Two string parameters are required for the function. At the time when you place the order, we assign the
LicenseTo and Registration code to you when the order is completed. You should keep the registration code in
a safe place and use them only in the source code. Putting the registration code visible to your user, such as a
plain text file, is not allowed.
The function will always succeed unless the program does not have sufficient memory. Therefore the return
value does not tell you if the license paratmeters are correct. Instead the object enters the DEMO mode. Under
the demo mode, the barcode image exported has a “DEMO” watermark.
The application can query if the barcode object is under the demo mode by calling function
IsBarcodeObjectDemo. If the function returns a non-zero value, the barcode object is under demo mode and
every barcode image exported carries a “DEMO” watermark.

7.3. Modifying Properties
There are several dozen properties you can modify on the barcode object. Most properties are not related to
each other; so changing one won't affect others. However, several exceptions exist. Changing the Symbology
property will also cause the Message property to change due to the fact that different symbologies have
different default Message values. Changing the measurment unit (Measurement property) will cause values of
length properties to change so that the barcode sizes remain intact.
To access a specific property your application calls get_XXX and put_XXX functions. Here XXX is the property
name. For example, to retrieve the vlaue of the Message property, use get_Message function. To set the
Message property, use put_Message function. For a list of all properties, refer to Chapter 8, Barcode Object
Properties and Methods Reference.

18 CHAPTER 7 PROGRAMMING INTERFACE

7.4. Loading/Saving Barcode Object
Properties of a barcode object can be saved into a file and loaded at later time. The functions mbxLoad and
mbxSave are used for loading and saving the barcode object, respectively. The first parameter is the file path,
and the second parameter indicates the file type.

7.5. Exporting images
The client application calls ExportImage or ExportImage2 functions to export the barcode image to a disk
file or a Stream object.

7.6. Destroying the object
After you have done with the object, you should call DestoryBarcodeObject to destroy the barcode object. By
doing so you release all resources associated with the object.

7.7. Erorr Handling
Not all functions succeed unconditionally. You should always check the return value for errors when working
with the program.
Barcode DLL reports two kinds of errors - operational errors and encoding errors. They are handled in
different ways.
Operational errors occur when an operation fails or a property is set to an invalid value. The error is reported
as returned value of the function. The error value is expressed in a 32-bit integer form, very similiar to the
HRESULT error code in the COM world. Consequently you can use SUCCEEDED and FAILED macros to tell if the
operation succeeds or fails.
For a list of applicable error codes, refer to the Chapter 9, Error Handling.
When error happens, you can use GetLastBarcodeErrorMessage to retrieve the reason, as demonstrated by
the VB code below:
Dim rc As Long
rc=put_Message(handle, "ABCD123")
If (rc < 0) Then
 GetLastBarcodeErrorMessage(barcode_object_handle, strError)
 MsgBox strError
End IF

7.8. Concurrency Issues
The DLL is thread safe - all functions can be called simutaneousely from multiple threads. However, the same
barcocde object handle value should only called by a single thread at any time. If you need to do so, serialize
the access using the protection mechanism provided by the operating system.

7.9. Data Type Issues

CHAPTER 7 PROGRAMMING INTERFACE 19

When working with our DLL interface, pay attention to the boolean type and the string type used by
exported functions. See below for details.

7.9.1. Boolean Type
The version 4 API uses bool type which is supported by most C compilers today. The previous version 3 uses
VARIANT_BOOL, which may require conversion in some cases.

7.9.2. String Type
When you use DLL functions to retrieve a string type property, you need to supply a buffer large enough
to hold the data. You can use 1024 as a reasonable buffer size. For example, the following code retrieve the
Message property of the barcode object:
char message[1024];
get_Message(handle, message);

For performance reasons, Barcode DLL does not check if the buffer is long enough. Consequently the buffer
overrun may happen if the buffer size is too small.
In Visual Basic 6, the default String type does not have a buffer at all. Passing an empty string will cause the
program to crash. You should never use a zero-length string to retrieve a string type property. Instead, use the
code below:
Dim strDefaultValue As String * 1024
Dim rc As Long
rc = get_Message(barcode_object_handle,
 strDefaultValue)

In .Net program, you need to use StringBuilder class to retrieve the string results. Refer to our example for
details.

7.10. Using Barcode DLL in a .Net Program
.Net programming has gained popularity recently. To use DLL in a .net program, you need to declare
functions using DllImportfirst. We have included a .Net sample called CaseCodePrintwith the product. We
wrapped all DLL export functions within a C# class. To make our code easy to understand, we wrap these
functions into properties and methods. You may take a look at our sample for details.

Chapter 8. Barcode Object Properties and
Methods Reference

8.1. General
Although DLL only allows plain “C” functions exported, the design uses an object-oriented methodology. All
functions manipulate the barcode object through a HANDLE which uniquely identifies the barcode object. A
HANDLE is defined as a pointer in C language.
A typical application creates the barcode object through function CreateBarcodeObject and retrieves the handle
to the object. Subsequently it calls various of functions to manipulate the object properties. The function
mbxExportImage is used to retrieve the barcode rendering from the object. After the application finishes, the
function DestroyBarcodeObject should be called to release all resources allocated by the object.
All properties and methods are listed in this chapter. Some properties are now obsolete and kept only for
backward-compatiblity reason.
Some properties may not be modifiable under certain design mode. Some properties may be related to other
properties - i.e. change to one property will change other properties. For example, Changing Symbology
property will also alter the value of Message property.

8.1.1. Properties
Table 8.1. List of Barcode Object Properties

AutoLabelSize Determines whether the current work mode is under barcode design mode
or the label design mode.

AutoSize Determines which party controls the sizing of the control.

BackColor Specifies the background color for the control.

BarHeight Specifies the height of the bars in the control, in user units.

BearerBars Determines whether to include the bearer bars around the barcodes.
applicable on selected symbologies.

BorderColor Specifies the border color for the control.

BorderStyle Specifies the border style.

BorderWidth Specifies the border with, in logical units

Code25OptionalCheckDigit Determines whether to include an optional checksum digit in all Code25
barcodes.

Code39OptionalCheckDigit Determines whether to include an optional checksum digit in all code 39
barcodes.

Code39StartStopChars Determines whether to display the start and stop characters in the human
readable of all code 39 barcodes.

Comment Specifies the string for the human readable comment printed around the
barcode.

CommentAlignment Determines how the text paragraphs are aligned within the comment.

22 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

CommentFont Specifies the font used to draw comment text.

CommentMarginBottom Specifies the margin on the bottom of the comment box.

CommentMarginLeft Specifies the margin on the left of the comment box.

CommentMarginRight Specifies the margin on the right of the comment box.

CommentMarginTop Specifies the margin on the top of the comment box.

CommentOnTop Determines whether the comment box is placed above the barcode image.

DataMatrixTargetSizeID Specifies the size of the Data Matrix barcode created.

Font Specifies the font used to draw human readable text.

ForeColor Specifies the foreground color of the control.

I2of5OptionalCheckDigit Deprecated in version 3.4.

LabelHeight Specifies the height of the label (working area).

LabelWidth Specifies the width of the label (working area).

MaxicodeClass Specifies the service class for the structured carrier message in MaxiCode
symbols.

MaxicodeCountryCode Specifies the country code for the structured carrier message in MaxiCode
symbols.

MaxicodeMode Specifies the encoding mode for the Maxicode symbols.

MaxicodeZipCode Specifies the zip/postal code for the structured carrier message in MaxiCode
symbols.

Measurement Specifies the measurement unit for all length properties.

Message Specifies a string which represents the data to be encoded.

NarrowBarWidth Specifies the width of the narrowest module in linear symbologies.

NarrowToWideRatio Specifies the ratio used to calculate the width of the wide element.
Applicable on selected symbologies.

PDFAspectRatio Specifies the overall height to width ratio of the PDF417 barcodes created.

PDFMaxCols Specifies the maximum number of codeword columns to allow in the
PDF417 barcodes created.

PDFMaxRows Specifies the maximum number of codeword columns to allow in the
PDF417 barcodes created.

PDFModuleHeight Specifies the height of the module in the PDF417 barcodes created.

PDFModuleWidth Specifies the width of the module in the PDF417 barcodes created.

PDFSecurityLevel Specifies the security level for error correction to use in PDF417 barcodes.

PDFTruncatedSymbol Determines whether to create the truncated version of PdF417 barcodes.

Picture Returns a snapshot of the drawing in Windows Enhanced Metafile Format
(EMF).

QuietZones Determines whether to include quiet zones in the barcodes.

RasterImageResolution Specifies the resolution which is used to export raster images.

Rotation Specifies the orientation of the working area in degrees.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 23

ShowCheckDigit Determines whether to include the checksum character in the human
readable.

ShowComment Determines whether the control displays the comment element.

ShowHRText Determines whether to display the human readable text.

SymbolMarginBottom Specifies the margins on the bottom of the symbol.

SymbolMarginLeft Specifies the margins on the left of the symbol.

SymbolMarginRight Specifies the margins on the right of the symbol.

SymbolMarginTop Specifies the margins on the top of the symbol.

Symbology Specifies the barcode format (symbology)

TexAlignment Specifies how the human readable text is aligned.

TextOnTop Determines whether the human readable text is placed above the barcode
image.

UccEanOptionalCheckDigit Deprecated in version 3.4

ZoomRatio Specifies the scale ratio of the current display area vs. the natural size.

8.1.2. Methods

Table 8.2. List of Barcode Object Methods

About Displays the About dialog.

ExportImage Exports the drawing to a graphics file with the specified format.

Load Loads the control properties from a file in binary or XML format.

Save Saves the control properties to a file in binary or XML format.

8.1.3. Deprecated Properties
During the evolution of this product, some properties have been deprecated in major releases. Deprecated
properties are no longer used in the implement. They are kept in the interface to retain backward
compatibility. Existing applications require no change to use newer versions of the product. Setting values to
deprecated properties render no effects.
Generally spearking, a property is deprecated because it is redundant, difficult to get it right at the first place,
and confusing to our customers.

Table 8.3. List of Deprecated Properties

Name Deprecated
Since

Comment

BarWidthReduction 3.2 Pixel-based rendering method makes it obsolete.

I2of5OptionalCheckDigit 3.4 Interleave 2 of 5 requires input to be even. In version 3.4, a
check digit is automatically calculated and appended if the
input has an odd length. See Section 10.14, “Interleaved 2 of 5
(ITF25)” for more information.

UccEanOptionalCheckDigit 3.4 Since version 3.4, all GS1-128 applications that are known to
the program that have mod 10 check digit will have the check

24 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

Name Deprecated
Since

Comment

digit calculated automatically and appended if necessary. See
Section 10.12.3, “Auto Check Digit” for more information.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 25

8.2. AutoLabelSize Property

Description
Returns or sets the value that determines the current work mode.

Syntax
HRESULT get_AutoLabelSize(HANDLE handle, bool* pVal);
HRESULT put_AutoLabelSize(HANDLE handle, bool val);

Remarks
Use this property to set/return the current work mode. When AutoLabelSize property is TRUE, the current
work mode is barcode design mode; otherwise the label design mode is assumed. Under the barcode design
mode, the size of the working area is not fixed. It grows or shrinks as the sizes of other components, such
as margins, barcode and the comment change. Under barcode design mode, properties LabelWidth and
LabelHeight are read-only and can not be altered.
On the contrary, under the label design mode, the size of the working area is fixed and can not be modified.
Under the label design mode, anything beyond the working area is clipped.
If you intend to create a barcode as small as possible, choose the barcode design mode by setting this property
to TRUE. If you'd like to print a full label with all components turned on, select the label design mode.

Note When you switch AutoLabelSize from TRUE to FALSE, the predefined label size
- 2 by 2 inches is assumed.

See Also
Section 8.22, “LabelWidth, LabelHeight Properties”
Section 8.3, “AutoSize Property”

26 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.3. AutoSize Property

Description
Returns or sets the value that defines how the control size is determined.

Syntax
HRESULT get_AutoSize(HANDLE handle, bool* pVal);
HRESULT put_AutoSize(HANDLE handle, bool val);

Remarks
AutoSize controls how the object responds to the sizing request from the container. When AutoSize is FALSE,
the object redraws itself to the maximum extent that the container specifies; otherwise it calculates the display
size by multiplying its natural size with the ZoomRatio, and draws itself within the display size.
When AutoSize is changed from FALSE to TRUE, the ZoomRatio is changed back to 1.0.

See Also
Section 8.50, “ZoomRatio Property”
Section 8.2, “AutoLabelSize Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 27

8.4. BackColor, ForeColor Properties

Description
BackColor - returns or sets the background color of the control.
ForeColor - returns or sets the foreground color of the control.

Syntax
HRESULT get_BackColor(HANDLE handle, LONG color);
HRESULT put_BackColor(HANDLE handle, LONG* pColor);
HRESULT get_ForeColor(HANDLE handle, LONG color);
HRESULT put_ForeColor(HANDLE handle, LONG* pColor);

Remarks
For opening systems we strongly recommend to set the background color to solid white (0xFFFFFF) and
foreground color to black (0x000000). Note: barcode requires decent contrast between the foreground color
and the background color in order to be readable. Always test the readability thoroughly when you select a
color pair different from black and white.

28 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.5. BarHeight Property

Description
BarHeight - returns or sets a value for the height of bars in Barcode control.

Syntax
HRESULT get_BarHeight(HANDLE handle, LONG* pVal)
HRESULT put_BarHeight(HANDLE handle, LONG val)

Remarks
The BarHeight property specifies the height of the dark elements in all linear symbologies with exception
(see notes below). The actual value is affected by the Measurement property. If Measurement is set to
mbxMeasureEnglish, the unit for this property is mils (1/1000 inch) otherwise it is 1/1000 cm. The default
value is 1000 which translates to 1 inch or 1 cm, depending on the measurement unit specified.
This property have no effect on the size of two-dimensional barcodes, such as PDF417, DataMatrix and
MaxiCode.
The height of elements in postal symbologies (POSTNET and RoyalMail) is fixed. Therefore, changing this
property has no effect on those types of barcodes.
The height of bars in a DataBar Truncated symbol is fixed at 13X (X is the industry term for NarrowBarWidth),
and the height of a DataBar Stacked symbol is fixed at 50X. Therefore, this property does not affect the height
of those two types of symbols.
In stacked symbologies (DataBar Stacked Omnidirectional and DataBar Expanded (multi-row), the overall height
is the number of rows multiplying BarHeight, plus the height of any required separator rows.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 29

8.6. BearerBars Property

Description
Returns or sets a value that determines whether to include bearer bars around the barcode.

Syntax
HRESULT get_BearerBars(HANDLE handle, bool* pVal);
HRESULT put_BearerBars(HANDLE handle, bool val);

Remarks
Bearer bars (see below) are horizontal bars printed across the top and bottom of the barcode image. Bearer
bars can help avoid partial reads should the reader move off the top or bottom of the code. Only certain
symbologies require bearer bars (for example Interleaved 2 of 5) as the start and stop characters in most bar
codes make bearer bars unnecessary.
In Barcode DLL the following symbologies can have bearer bars: Codabar, Code11, Code25, Code128, UCC/
EAN-128, Code39, Code39 HIBC, Code 39 Full ASCII, Code93, Interleaved 2 of 5, MSI/Plessey and Telepen. Other
symbologies ignore this property.

30 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.7. BorderColor Property

Description
Returns or sets the color of borders.

Syntax
HRESULT put_BorderColor(HANDLE handle, LONG val);
HRESULT get_BorderColor(HANDLE handle, LONG* pVal);

Remarks
Use this property to specify the border color of Barcode DLL. The default value is 0 (black).

See Also
Section 8.9, “BorderWidth Property”
Section 8.8, “BorderStyle Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 31

8.8. BorderStyle Property

Description
BorderStyle - returns or sets a value that determines the border style.

Syntax
HRESULT put_BorderStyle(HANDLE handle, LONG Val);
HRESULT get_BorderStyle(HANDLE handle, LONG* pVal);

Remarks
Use BorderStyle property to specify the border style. This property is set by using one of the BorderStyle
enumeration values:

Table 8.4. Border Styles

Constant Value Description

mbxBorderStyleNone 0 No border lines

mbxBorderStyleSolid 1 Solid line

mbxBorderStyleDash 2 Dash line

mbxBorderStyleDot 3 Dot line

mbxBorderStyleDashDot 4 Dash dot line

mbxBorderStyleDashDotDot 5 Dash dot dot line

See Also
Section 8.7, “BorderColor Property”
Section 8.9, “BorderWidth Property”

32 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.9. BorderWidth Property

Description
BorderWidth - returns or sets the value for the border width.

Syntax
HRESULT get_BorderWidth(HANDLE handle, LONG* pVal);
HRESULT put_BorderWidth(HANDLE handle, LONG val);

Remarks
Use BorderWidth property to specify a border width for the Barcode DLL. The border width is expressed
in logical units prescribed by the Measurement property. For example, if you set this property to 15 and the
Measurement is mbxMeasureEnglish, the border width is 15 mils (0.015 inch). The default value is 15.
To disable the border, set BorderWidth to 0 or BorderStyle to mbxBorderStyleNone.

See Also
Section 8.8, “BorderStyle Property”
Section 8.7, “BorderColor Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 33

8.10. Code25OptionalCheckDigit Property

Description
Code25OptionalCheckDigit - returns or sets a value that determines whether to include an optional checksum
digit in all Code25 barcodes produced by Barcode DLL.

Syntax
HRESULT put_Code25OptionalCheckDigit(HANDLE handle, bool val);
HRESULT get_Code25OptionalCheckDigit(HANDLE handle, bool* pVal);

Remarks
A code 2 of 5 barcode can have an optional check digit. When the Code25OptionalCheckDigit is TRUE,
a check digit is calculated using modulo 10 algorithm and added to a code 2 of 5 barcode. To display the
checksum digit in the human readable text, set ShowCheckDigit to TRUE.

See Also
Section 10.7, “MSI/Plessey, Code 25 and Code11”

34 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.11. Code39OptionalCheckDigit Property

Description
Code39OptionalCheckDigit - returns or sets a value that determines whether to include an optional checksum
digit in all Code39 barcodes produced by Barcode DLL.

Syntax
HRESULT put_Code39OptionalCheckDigit(HANDLE handle, bool val);
HRESULT get_Code39OptionalCheckDigit(HANDLE handle, bool* pVal);

Remarks
A code 3 of 9 symbol can have an optional check digit (character) at the end of the barcode. When the
Code39OptionalCheckDigit property is set to TRUE, a check digit is calculated using modulo 43 method and
appended to the end of the barcode. To display the checksum digit, set ShowCheckDigit to TRUE.
This property affects two symbologies: Code 39 and Code39 Full ASCII.

See Also
Section 10.2, “Code 39”
Section 10.3, “Code 39 Full ASCII”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 35

8.12. Code39StartStopChars Property

Description
Returns or sets a value that determines whether to display the start and stop characters in the human
readable text in all Code39 barcodes produced by Barcode DLL.

Syntax
HRESULT get_Code39StartStopChars(bool* pVal);
HRESULT put_Code39StartStopChars(bool val);

Remarks
For historical reasons many code39 symbols print start/stop characters (asterisks) at the beginning and the
end of the human readable text. While the start and stop characters are always present in the barcode, it is not
necessary for them to appear in the human readable. When the Code39StartStopChars property is set to TRUE,
the asterisks are displayed at both the beginning and end of the human readable.
This property affects the three Code 39 symbologies - Code 39, HIBC and Code39 Full ASCII.

Note The asterisks are not part of the encoded data; and you should not include
asterisks in Message property when creating code 39 barcodes.

See Also
Section 10.2, “Code 39”
Section 10.4, “Code 39 HIBC”
Section 10.3, “Code 39 Full ASCII”

36 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.13. Comment Property

Description
Returns or sets a string for the human readable comment printed around the barcode symbol.

Syntax
HRESULT get_Comment(HANDLE handle, char* lpszComment);
HRESULT put_Comment(HANDLE handle, const char* lpszComment);

Remarks
In addition to the human readable, which always reflects the encoded data and conforms to the standard
requirements, you can optionally place a paragraph of text beside the barcode image.
You may adjust margins around the comment, place the comment at the top or bottom, modify the font
typeface as well as the size, and change how the text is aligned.
Control characters are not printed.

Note It is now possible to enter multiple paragraphs in the comment by inserting
\n at the end of each paragraph (except the last one). For example, the string First
paragraph\nSecond Paragraph renders two paragraphs, as illustrated below:

See Also
Section 8.15, “CommentFont Property”
Section 8.14, “CommentAlignment Property”
Section 8.43, “ShowComment Property”
Section 8.17, “CommentOnTop Property”
Section 8.16, “CommentMarginTop, CommentMarginBottom, CommentMarginLeft, CommentMarginRight
Properties”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 37

8.14. CommentAlignment Property

Description
CommentAlignment - returns or sets a value indicating how the comment is aligned.

Syntax
HRESULT get_CommentAlignment(HANDLE handle, LONG* pVal);
HRESULT put_CommentAlignment(HANDLE handle, LONG val);

Remarks
This property controls how the text in the comment portion is aligned. Valid alignment choices are listed in
the table below:

Table 8.5. CommentAlignment Options

Constant Value Description

mbxAlignLeft 0 Left alignment (default). Align the text to the left edge of the comment
box.

mbxAlignRight 1 Right alignment. Align the text to the right edge of the comment box.

mbxAlignCenter 2 Center alignment. Align the text to the center of the comment box

mbxAlignJustify 3 Justify alignment. Align the text to both edge of the comment box.

38 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.15. CommentFont Property

Description
Returns or sets the font for comment text.

Syntax
HRESULT get_Font(HANDLE handle, IFontDisp** pVal);
HRESULT put_Font(HANDLE handle, IFontDisp* val);

Remarks
The default font used to draw comment text is typeface of Arial, 8 points.
This property is used to retrieve/set the font used for comment text. To set/retrieve the font used for human
readable text, use Font property.
In Visual Basic you cannot create a Font object using code like Dim X As New Font. If you want to create a
Font object, you can use the StdFont object, as in the code below:
Dim X As New StdFont
X.Bold = True
X.Name = "Arial"
Dim rc As Long
rc = put_CommentFont(handle, X)

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 39

8.16. CommentMarginTop, CommentMarginBottom,
CommentMarginLeft, CommentMarginRight Properties

Description
These four properties control the margins around the comment box.

Syntax
HRESULT get_CommentMarginTop(HANDLE handle, LONG* pVal);
HRESULT put_CommentMarginTop(HANDLE handle, LONG val);
HRESULT get_CommentMarginBottom(HANDLE handle, LONG* pVal);
HRESULT put_CommentMarginBottom(HANDLE handle, LONG val);
HRESULT get_CommentMarginLeft(HANDLE handle, LONG* pVal);
HRESULT put_CommentMarginLeft(HANDLE handle, LONG val);
HRESULT get_CommentMarginRight(HANDLE handle, LONG* pVal);
HRESULT put_CommentMarginRight(HANDLE handle, LONG val);

Remarks
The above four parameters control the margins around the comment text box. Note that under different
design modes, the CommentMarginLeft and CommentMarginRight have different meanings. For detailed
information refer to Chapter 5, Fundamentals.

40 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.17. CommentOnTop Property

Description
Returns or sets a value that determines whether the comment box is placed above or below the symbol.

Syntax
HRESULT get_CommentOnTop(HANDLE handle, bool* pVal);
HRESULT put_CommentOnTop(HANDLE handle, bool val);

Remarks
The default value for CommentOnTop is FALSE. To place the comment on top of the image, set this property
to TRUE.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 41

8.18. DataMatrixModuleSize Property

Description
Returns or sets a value that determines the width and height of a single cell in the data matrix symbols
generated by Morovia Barcode DLL.

Syntax
HRESULT get_DataMatrixModuleSize(HANDLE handle, LONG* pVal);
HRESULT put_DataMatrixModuleSize(HANDLE handle, LONG val);

Remarks
The “real estate”unit of a data matrix symbol, the module, is always square. This property sets both the width
and the height of the square. It affects the overall symbol size.
The default value for DataMatrixModuleSize is 20 mils. The property can be any numbers between 1 and
100.

See Also
Section 8.19, “DataMatrixTargetSizeID Property”

42 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.19. DataMatrixTargetSizeID Property

Description
Returns or sets a value that determines the shape of the DataMatrix symbol produced by Morovia Barcode
DLL.

Syntax
HRESULT get_DataMatrixTargetSizeID(HANDLE handle, LONG* pVal);
HRESULT put_DataMatrixTargetSizeID(HANDLE handle, LONG val);

Remarks
Data Matrix only allows a limit number of combinations of rows and columns. You must set the property to 0
(automatic) or one of the following values:

Table 8.6. DataMatrixTargetSizeID options

Constant Value Description

mbxDMTargetSizeAuto 0 Automatic selection of data matrix size

mbxDMTargetSize_12X12 1 Rectangle symbol of 12 by 12 modules

mbxDMTargetSize_14X14 2 Rectangle symbol of 14 by 14 modules

mbxDMTargetSize_16X16 3 Rectangle symbol of 16 by 16 modules

mbxDMTargetSize_18X18 4 Rectangle symbol of 18 by 18 modules

mbxDMTargetSize_20X20 5 Rectangle symbol of 20 by 20 modules

mbxDMTargetSize_22X22 6 Rectangle symbol of 22 by 22 modules

mbxDMTargetSize_24X24 7 Rectangle symbol of 24 by 24 modules

mbxDMTargetSize_26X26 8 Rectangle symbol of 26 by 26 modules

mbxDMTargetSize_32X32 9 Rectangle symbol of 32 by 32 modules

mbxDMTargetSize_36X36 10 Rectangle symbol of 36 by 36 modules

mbxDMTargetSize_40X40 11 Rectangle symbol of 40 by 40 modules

mbxDMTargetSize_44X44 12 Rectangle symbol of 44 by 44 modules

mbxDMTargetSize_48X48 13 Rectangle symbol of 48 by 48 modules

mbxDMTargetSize_52X52 14 Rectangle symbol of 52 by 52 modules

mbxDMTargetSize_64X64 15 Rectangle symbol of 64 by 64 modules

mbxDMTargetSize_72X72 16 Rectangle symbol of 72 by 72 modules

mbxDMTargetSize_80X80 17 Rectangle symbol of 80 by 80 modules

mbxDMTargetSize_88X88 18 Rectangle symbol of 88 by 88 modules

mbxDMTargetSize_96X96 19 Rectangle symbol of 96 by 96 modules

mbxDMTargetSize_104X104 20 Rectangle symbol of 104 by 104 modules

mbxDMTargetSize_120X120 21 Rectangle symbol of 120 by 120 modules

mbxDMTargetSize_132X132 22 Rectangle symbol of 132 by 132 modules

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 43

Constant Value Description

mbxDMTargetSize_144X144 23 Rectangle symbol of 144 by 144 modules

mbxDMTargetSize_8X18 24 Rectangle symbol of 8 by 18 modules

mbxDMTargetSize_8X32 25 Rectangle symbol of 8 by 32 modules

mbxDMTargetSize_12X26 26 Rectangle symbol of 12 by 26 modules

mbxDMTargetSize_12X36 27 Rectangle symbol of 12 by 36 modules

mbxDMTargetSize_16X36 28 Rectangle symbol of 16 by 36 modules

mbxDMTargetSize_16X48 29 Rectangle symbol of 16 by 48 modules

mbxDMTargetSize_10X10 30 Rectangle symbol of 10 by 10 modules

Data matrix offers limited combinations between the number of rows and columns. A valid selection is
called a data matrix size. A data matrix symbol can be any one of the 30 shapes listed in table Table 8.6,
“DataMatrixTargetSizeID options”. In addition, our software uses value 0 for automatic size selection.
The value 0 means “do not care”. Barcode DLL selects the smallest size to fit your data when you set
DataMatrixTargetSizeID to 0.

Note The size ID for the smallest data matrix shape, mbxDMTargetSize_10X10, is
30.

See Also
Section 8.18, “DataMatrixModuleSize Property”

44 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.20. Font Property

Description
Returns or sets the font for human readable text.

Syntax
HRESULT get_Font(HANDLE handle, IFontDisp** pVal);
HRESULT put_Font(HANDLE handle, IFontDisp* val);

Remarks
The default font used to draw comment text is typeface of Arial, 9 points. Generally speaking, you should
use a sans-serif font for human readable text. Some industries require OCR-B(Optical Character Recognition
Revision B) font to be used.
This property is used to retrieve/set font for human readable text. To set /retrieve font used for comment, use
CommentFont property.
In Visual Basic you cannot create a Font object using code like Dim X As New Font. If you want to create a
Font object, you can use the StdFont object, as demonstrated in the code below:
Dim X As New StdFont
X.Bold = True
X.Name = "Arial"
Dim rc As Long
rc = put_Font(handle, X)

See Also
Section 8.44, “ShowHRText Property”
Section 8.47, “TexAlignment Property”
Section 8.48, “TextOnTop Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 45

8.21. I2of5OptionalCheckDigit Property

Description
Deprected since 3.4.

Syntax
HRESULT get_I2of5OptionalCheckDigit(HANDLE handle, bool* pVal);
HRESULT put_I2of5OptionalCheckDigit(HANDLE handle, bool val);

Remarks
Previously, in order to add check digit to an Interleaved 2 of 5 bracode, you need to set this property to TRUE.
Interleaved 2 of 5 symbology requires the input to be even length. If this property is TRUE and the input
already has even length, the previous implement appends a '0' at the end, and calculate the check digit. This is
an unexected behavior for many customers.
In version 3.4 and above, this property has no effect on the barcode created. Whether or not a check digit is
required depends on if the length of the input is even or odd. If the length is even, no check digit is added
and Barcode DLL encodes as is. If the length is odd, however, the program calculates the check digit and
automatically appends at the end to make the whole length even.

See Also
Section 10.14, “Interleaved 2 of 5 (ITF25)”

46 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.22. LabelWidth, LabelHeight Properties

Description
LabelWidth, LabelHeight - returns or sets the width and height of the working area, in measurement units
specified by Measurement.

Syntax
HRESULT get_LabelHeight(HANDLE handle, LONG* pVal);
HRESULT put_LabelHeight(HANDLE handle, LONG val);
HRESULT get_LabelWidth(HANDLE handle, LONG* pVal);
HRESULT put_LabelWidth(HANDLE handle, LONG val);

Remarks
Under label design mode, you need to set these two properties to the size of working area you plan to work
on. The drawing can only be done within the working area; anything beyond the boundary will be clipped
out.
If you are working on barcode design mode by setting AutoLabelSize to TRUE, you can not set these two
properties. The working area expands and shrinks when the barcode image and comment expand or shrink.
Same as all other length properties, the actual value depends on Measurement property. If Measurement is
mbxMeasureEnglish, the value is measured in mils(1/1000 inch), otherwise it is in high metric (1/1000 cm).
The default working area under label design mode is 2" by 2". When you set AutolabelSize to FALSE, Barcode
DLL uses the default size for the working area by setting both LabelHeight and LabelWidth to 2000 mils.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 47

8.23. MaxicodeClass Property

Description
Returns or sets a value that determines the service class for structured carrier message to be encoded in
Maxicode symbols generated by Morovia Barcode DLL.

Syntax
HRESULT get_MaxicodeClass(HANDLE handle, LONG* pVal);
HRESULT put_MaxicodeCountryCode(HANDLE handle, LONG val);

Remarks
The class of service code is a 3-digit number which is defined by the carrier and shipper to indentify the service
class.
The default value for this property is 001 .

48 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.24. MaxicodeMode Property

Description
Returns or sets a value that determines the encoding mode of Maxicode symbols generated by Morovia
Barcode DLL.

Syntax
HRESULT get_MaxicodeMode(HANDLE handle, SHORT* pVal);
HRESULT put_MaxicodeMode(HANDLE handle, SHORT val);

Remarks
Maxicode specification defines 5 encoding modes from 2 to 6. Mode 2 and 3 are reserved for domestic and
international carrier messages. Mode 4 and mode 5 both encode generic data. Between the two of them, mode
5 offers slightly better data security. Other Maxicode properties, such as MaxicodeClass, MaxicodeCountryCode,
are meaningful only under mode 2 and 3. Mode 6 is designated for reader programming purposes.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 49

8.25. MaxicodeCountryCode Property

Description
Returns or sets a value that identifies the country in the structure carrier message encoded in Mode 2 or Mode
3 MaxiCode symbols.

Syntax
HRESULT get_MaxicodeCountryCode(HANDLE handle, LONG* lCountryCode);
HRESULT put_MaxicodeCountryCode(HANDLE handle, LONG countrycode);

Remarks
The country code is a 3-digit number which represents a country. For a complete list of country codes, see ISO
standard 3166.

50 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.26. MaxicodeZipCode Property

Description
Returns or sets a value for the postal code/zip code used in the structure carrier message under Mode 2 or
Mode 3 MaxiCode symbols.

Syntax
HRESULT get_MaxicodeZipCode(HANDLE handle, char* lppszValue);
HRESULT put_MaxicodeZipCode(HANDLE handle, const char* lpszValue);

Remarks
The MaxiCodeZipCode is the postal code/zip code of the delivery address. Only capital letters and digits are
acceptable.
Note: Mode 2 encodes a 9-digit U.S. zip code while Mode 3 encodes a 6-character alpha-numeric postal code.
You are not allowed to specify a text with length greater than 9. If MaxiCodeMode is 2 but an alpha-numeric
MaxicodeZipCode is specified, the program uses 000000000 as the MaxiCodeZipCode.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 51

8.27. Measurement Property

Description
Returns or sets the measurement unit for all length properties.

Syntax
HRESULT get_Measurement(HANDLE handle, LONG* pVal);
HRESULT put_Measurement(HANDLE handle, LONG val);

Remarks
You can set this property to one of the two values:

Table 8.7. Measurement Unit Options

Constant Value Description

mbxMeasureEnglish 0 All lengths are in mils (1/1000 inch)

mbxMeasureMetrics 1 All lengths are in 1/1000 cm

Most symbologies use U.S. English measurement unit, which is based on mils (1/1000 inch). Some
symbologies are metric oriented, such as Royal Mail and MaxiCode. To produce barcodes as accurate as
possible, we recommend that you stick to the measurement unit specified by the standard to avoid float
number calculation.

Note When Measurement changes, all length properties change accordingly so that
the barcode sizes remain intact.

52 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.28. Message Property

Description
Returns or sets a string for the message to be encoded.

Syntax
HRESULT get_Message(HANDLE handle, char* lppszValue);
HRESULT put_Message(HANDLE handle, const char* lpszValue);

Remarks
Not all symbologies are capable of encoding all characters. Some may only encode numeric data. Some
impose a limit on the length of the encoded data. If you encode data with invalid characters or length,
Barcode DLL returns an error.

• UPC symbologies (UPC-A, UPC-E, EAN-13, EAN-8)
A UPC symbol may have an optional 2-digit or 5-digit add-on barcode. To create an add-on
barcode, separate the main data and the extension data with a vertical bar. For example, the input
1-932111-39-5|55999 produces a Bookland barcode with a 5-digit add-on symbol.

• GS1 DataBar Symbologies (DataBar, Truncated, Limit, Stacked and Stacked Omnidirectional)
All GS1 DataBar symbologies excluding DataBar Expanded encode A 14-digit number called GTIN
(Global Trade Identification Number). The input must be exactly 13 or 14 digits. AI (01) is part of
human readable but should not go into the input.

• GS1-128 Symbology
To ensure the human readable format is correct, the AI and field ID must be enclosed with parentheses
(()). If the data is formatted incorrectly you may end with an error. For example, the following data is
valid for UCC/EAN 128 message input:
(01)12345678901231

Additional information is also needed to create a shortest possible barcode. Refer to Section 10.12,
“UCC/EAN-128” for more details.

• GS1 DataBar Expanded
The data encoded by DataBar Expanded follow the exact rules that outlined in the above bullet (See
GS1-128 Symbology). AI must be enclosed with parentheses (()).

• Tilde codes
Tilde code sequence can be used to enter special characters, such as extended ASCII characters and
symbology-specific characters if supported. See each Symbology section for details.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 53

8.29. NarrowBarWidth Property

Description
Returns or sets a value for the width of the narrowest module in linear symbologies.

Syntax
HRESULT get_NarrowBarWidth(HANDLE handle, LONG* pVal);
HRESULT put_NarrowBarWidth(HANDLE handle, LONG val);

Remarks
This property defines the width of the narrowest element in a linear barcode - a.k.a X-dimension. The
measurement unit is in either 1/1000 inch or 1/1000 cm depending on the Measurement unit used.
By default the value for this property is 13. The valid range is from 1 to 1000. Industry standards require that
the barcodes used in an open system have a X-dimension at least of 10 mils (one-hundredth of inch). If the X-
dimension is too small, some scanners may have problems reading the barcode.
This property affects most linear symbologies. Height-modulated postal barcodes, such as POSTNET and
Royal Mail barcodes, use fixed pitch thus this property has no effect on these symbologies.

54 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.30. NarrowToWideRatio Property

Description
Returns or sets the ratio of the wide to narrow bar in a barcode.

Syntax
HRESULT get_NarrowToWideRatio(HANDLE handle, double* pVal);
HRESULT put_NarrowToWideRatio(HANDLE handle, double val);

Remarks
Some linear symbologies can have two module widths. The width of the wide one is a fixed multiple of the
width of the narrow module (NarrowBarWidth). You can choose a value ranging from 2.0 to 3.0 for this ratio.
This property is valid only for Code 39, Code 25, Code 11, Codabar and Interleaved 2 of 5 symbologies. All
others ignore this property. We also recommend you set a value between 2.5 to 3.0 so the barcode can be
easier to be recognized.
Since the value may impact the readability of the barcode, we highly recommend that you test the barcode
readability when you set the value to anything below 2.5.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 55

8.31. PDFAspectRatio Property

Description
Returns or sets a value for the overall height to width ratio of PDF417 barcode generated by Barcode DLL.

Syntax
HRESULT get_PDFAspectRatio(double* pVal);
HRESULT put_PDFAspectRatio(double val);

Remarks
The PDFAspectRatio determines the overall shape of the PDF417 symbol and is defined as the overall height
to width ratio. Higher values for the Aspect Ratio (greater than 1) produce tall, thin PDF417 bar codes
and small values (greater than zero and less than 1) produce short, wide bar codes. A value of 1 produces
approximately square bar codes.
The default value for this property is 0.5.

56 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.32. PDFMaxCols Property

Description
Returns or sets a value for the maximum number of codeword columns allowable in all PDF417 barcodes
generated. Since version 3.4, this property is also used to specify the number of symbol per row in GS1
DataBar Expanded symbology.

Syntax
HRESULT get_PDFMaxCols(LONG* pVal);
HRESULT put_PDFMaxCols(LONG val);

Remarks
The PDFMaxCols and the PDFMaxRows properties allow you to set the target number of columns and rows.
The PDFMaxCols property specifies the maximum number of codeword columns in a PDF symbol. It can be
set to a value ranging from 1 to 30.
Since version 3.4, GS1 DataBar Expanded is supported in Barcode ActiveX Professional and Barcode DLL
product line. DataBar Expanded can be mutliple rows, with each row holding even number of symbol
characters. This property is used to specify the number of symbols per row in DataBar symbology. This
number must be between 2 and 22 otherwise 22 is used. Because DataBar Expanded can have 22 symbols
at the most. Setting to 22 or 0 makes the resulted barcode one row only. When used in DataBar Expanded
symbology, the number must be even otherwise it is rounded to the closet even integer.

See Also
Section 8.33, “PDFMaxRows Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 57

8.33. PDFMaxRows Property

Description
Returns or sets a value for the maximum number of codeword rows allowable in all PDF417 bar code symbols
produced by Morovia Barcode DLL.

Syntax
HRESULT get_PDFMaxRows(HANDLE handle, LONG* pVal);
HRESULT put_PDFMaxRows(HANDLE handle, LONG val);

Remarks
The PDFMaxCols and the PDFMaxRows properties allow you to set the target number of columns and rows.
The default value for PDFMaxRows is 0, meaning that program automatically picks the number of rows. The
valid range for this property is 3 to 90.

See Also
Section 8.32, “PDFMaxCols Property”

58 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.34. PDFModuleHeight Property

Description
Returns or sets a value for the height of the modules in the PDF417 barcode generated.

Syntax
HRESULT get_PDFModuleHeight(LONG* pVal);
HRESULT put_PDFModuleHeight(LONG val);

Remarks
The recommended value for PDFModuleHeight is approximately three times the value of PDFModuleWidth.
You can set this property to any values greater than 10 mils.
The valid range for PDFModuleHeight is from 1 to 100. The default value is 30.

See Also
Section 8.35, “PDFModuleWidth Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 59

8.35. PDFModuleWidth Property

Description
Returns or sets a value for the width of the modules in the PDF417 barcodes generated.

Syntax
HRESULT get_PDFModuleWidth(LONG* pVal);
HRESULT put_PDFModuleWidth(LONG val);

Remarks
The recommended value for PDFModuleWidth is between 10 and 30 mils. To achieve the best read rate, we
recommend that you set a value which is integral times of the pixel width on the target device (the width of a
pixel on a computer display is 10.42 mils and the one on a laser printer is 3.33 mils).
The valid range for this property is between 1 and 100. The default value is 13.

See Also
Section 8.34, “PDFModuleHeight Property”

60 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.36. PDFSecurityLevel Property

Description
Returns or sets a value for security level used in all PDF417 barcodes generated.

Syntax
HRESULT get_PDFSecurityLevel(SHORT* pVal);
HRESULT put_PDFSecurityLevel(SHORT val);

Remarks
The PDFSecurityLevel property allows you to select a PDF417 error correction level from 0 to 8 (or 9 for
automatic). Each higher security level up to 8 adds additional overhead to a PDF417 symbol thereby requires
large symbol space.
The default value for this property is 9 (automatic).

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 61

8.37. PDFTruncatedSymbol Property

Description
Returns or sets a value that determines whether to generate the truncated version of all PDF417 bar codes
generated by the Barcode DLL.

Syntax
HRESULT get_PDFTruncatedSymbol(bool* pVal);
HRESULT put_PDFTruncatedSymbol(bool val);

Remarks
You can produce a truncated version of PDF417 barcode by setting PDFTruncatedSymbol to TRUE. A
truncated PDF417 symbol reduces the stop pattern to a single termination bar. Truncated symbols should be
used only in a clean and controled environment.
The default value for this property is FALSE.

62 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.38. Picture Property

Description
Readonly property. Returns a snapshot of the drawing in Windows Enhanced Metafile Format (EMF).

Syntax
HRESULT get_Picture(IPictureDisp** ppVal);

Remarks
The Picture property provides a convenient method to retrieve the drawing without first saving it to disk. The
picture object contains an enhanced metafile handle which can be passed to clipboard or played on a device.
Note after version 3.2, drawing units are measured from the default printer. If you print to a low-resolution
printer, set the target printer as the default before retrieving the EMF handle.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 63

8.39. QuietZones Property

Description
Returns or sets a value that determines whether to include quiet zones on the barcodes generated.

Syntax
HRESULT get_QuietZones(bool* pVal);
HRESULT put_QuietZones(bool val);

Remarks
In linear barcodes, quiet zone is defined as a clear space that precedes the start character of a barcode symbol
and follows the stop character. In two-dimensional barcodes quiet zones are clear area around the barcode.
The space is required to help scanner determine where the barcode starts and stops.
The width of space added is 10 times the NarrowBarWidth value for all linear barcodes, 2 times
PDFModuleWidth value for PDF417 barcodes, 2 times DataMatrixModuleSize value for DataMatrix barcodes
and 1 element width for MaxiCode barcodes. Setting this property substantially increase the barcode length
for linear symbologies.
You can also use symbol margins to create effective quiet zones. By default Barcode DLL set the symbol
margins to 100 mils at 4 directions. When this is the case, you may safely set this property to FALSE to better
align the comment and human readable text.

64 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.40. RasterImageResolution Property

Description
RasterImageResolution - returns or sets a value that corresponds to the resolution (in pixels per inch) of the
target device when export barcode images to a raster graphic file format (JPEG, GIF, PNG, TIF and BMP).

Syntax
HRESULT get_RasterImageResolution(LONG* pVal);
HRESULT put_RasterImageResolution(LONG val);

Remarks
When you export the barcode image into a raster graphics file format such as JPG, GIF and PNG, you are
converting the drawing commands (device independent) to an array of pixels which are device dependent.
The size of a pixel varies based on the device and usually is measured by dot per inch (dpi). A laser printer
usually has a high resolution of 300 dpi while the screen has a low resolution of 96 dpi. As a result, an image
may have different physical size when displayed on the screen than printed. The greater the resolution is,
the bigger the file size and the accurate of the details. We suggest you set this property to the value which
matches your printer.
The default value for this property is 300.

See Also
Section 8.52, “ExportImage Method”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 65

8.41. Rotation Property

Description
Returns or sets a value indicating how to rotate the working area.

Syntax
HRESULT get_Rotation(LONG* pVal);
HRESULT put_Rotation(LONG val);

Remarks
This property controls how the working area is rotated. Valid rotation choices are:

Table 8.8. Rotation Options

Constant Value Description

mbxRTZeroDegree 0 No rotation

mbxRTAntiClockwise_90 1 Rotate at 90 degrees angle counterclockwise

mbxRTAntiClockwise_180 2 Rotate at 180 degrees angle counterclockwise(upside
down)

mbxRTAntiClockwise_270 3 Rotate at 270 degrees angle counterclockwise

66 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.42. ShowCheckDigit Property

Description
ShowCheckDigit - Determines whether the checksum characters will be shown on the human readable
portion. This option is effective to selected symbologies only.

Syntax
HRESULT get_ShowCheckDigit(bool* pval);
HRESULT put_ShowCheckDigit(bool val);

Remarks
Different symbologies have different rules regarding check digit. For some symbologies, check digit is part of
the data and should always be included in the human readable text. Some symbologies allow optional check
digit. Some symbologies require check character not be displayed at all.

• Check digit is part of data and is always displayed.
This category includes UPC-A, UPC-E, EAN-13, EAN-8, Bookland, and UCC/EAN-128. This property
has no effect on these symbologies.

• Check digit is required, but not treated as part of data and is never included in the human readable
text.
This category includes Code 128, Telepen and Telepen Numeric.

• Check digit is required, and can be optinally included into the human readable text.
This category includes Code 93, Code 11, POSTNET, PLANET and MSI/Plessey.

• Check digit is optional, and can be optionally included in the human readable text.
This category includes Code 39, Code 39 Full ASCII, HIBC.

In version 3.4, there are some noteable changes:
• Previously, HIBC barcodes may turn off its check digit in the human readable display (although the

check digit always appear in the barcode). After 3.4, the check digit is always included in the human
readable text, as required by the standard.

• Before 3.4, whether a UCC/EAN-128 check digit is calculated depends on UccEanOptionalCheckDigit.
After version 3.4, the check digit is always included in the human readable text.

See Also
Section 8.44, “ShowHRText Property”
Section 8.10, “ Code25OptionalCheckDigit Property ”
Section 8.11, “Code39OptionalCheckDigit Property”
Section 8.21, “I2of5OptionalCheckDigit Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 67

8.43. ShowComment Property

Description
Returns or sets a value that determines whether the control displays the comment portion.

Syntax
HRESULT get_ShowComment(bool* pVal);
HRESULT put_ShowComment(bool val);

Remarks
Toggle this property to turn on or turn off the display of the comment portion. Note that if this property is
FALSE, comment margin properties will not be included during the position calculation of other components,
such as working area, bar code image etc. If you want to have these margins participate the calculation and do
not want to see the comment, set Comment property to an empty string instead.

68 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.44. ShowHRText Property

Description
Returns or sets a value that determines whether the control displays the human readable portion.

Syntax
HRESULT get_ShowHRText(bool* pVal);
HRESULT put_ShowHRText(bool val);

Remarks
Toggle this property to turn on or turn off the display of the human readable text.
Two dimensional barcodes do not have the concept of “human readable”. Consequently this property has no
effect on 2D barcodes.
Per standard, UPC-A, UPC-E, EAN-13, EAN-8 barcodes and their supplements should always have the
human readable as an integrated part of the image. In versions prior to 3.2, you can not produce those
barcodes without visible human readable, even you set ShowHRText to FALSE. This behavior has changed
since version 3.2. Unless you have absolute reason to turn it off, you should set ShowHRText to TRUE when
creating these types of barcodes.

Note The width of human readable text portion never exceeds the barcode length.
If the barcode length is too small, the text will wrap into multiple lines. If this is not
desired, reduce the font size, or place the human readable text into comment and
adjust comment margin properties to increase the width of comment box so that the
text stays in one line.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 69

8.45. Symbology Property

Description
Returns or sets a value indicating the type of the bar code format (symbology) to be generated by the ActiveX
control.

Syntax
HRESULT get_Symbology(LONG* pVal);
HRESULT put_Symbology(LONG val);

Remarks
The Barcode DLL currently supports the following symbologies:

Table 8.9. Symbology Options

Constant Value Description

mbxCode39 0 (default) Code 39 (43 character set)

mbxCode39_Full_ASCII 1 Code 39 Full ASCII

mbxCode39_HIBC 2 Code 39 Mod 43 (Health Industry
Bar Code)

mbxCodaBar 3 Codabar

mbxCode93 4 Code 93

mbxCode128 5 Code 128

mbxUCC_EAN_128 6 UCC/EAN 128

mbxInterleaved_2of5 7 Interleaved 2 of 5 (ITF25)

mbxUPC_A 8 UPC-A

mbxUPC_E 9 UPC-E

mbxEAN_13 10 EAN/JAN-13

mbxEAN_8 11 EAN/JAN-8

mbxBookland 12 Bookland

mbxTelepen 13 Telepen

mbxTelepenNumeric 14 Telepen Numeric (double density)

mbxPostnet 20 PostNET (barcode used by USPS)

mbxPlanet 21 Planet (used by USPS for package
tracking)

mbxRoyalMail 22 Royal Mail (U.K. Postal)

mbxMSI_Plessey 30 MSI/Plessey

mbxCode25 31 Code 25

mbxCode11 32 Code 11

mbxCode11 32 Code 11

mbxDataBar 33 DataBar

70 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

Constant Value Description

mbxDataBarTruncated 34 DataBar Truncated

mbxDataBarStacked 35 DataBar Stacked

mbxDataBarStackedOmni 36 DataBar Stacked Omnidirectional

mbxDataBarLimited 37 DataBar Limited

mbxDataBarExpanded 38 DataBar Expanded

mbxPDF417 40 PDF 417 (2D symbology)

mbxDataMatrix 41 DataMatrix (2D symbology)

mbxMaxiCode 42 MaxiCode (2D symbology)

Some symbologies only encode certain limited set of characters, such as digits. Some symbologies impose
limit of the data length; some require checksum characters. If you are not familiar with the symbologies you
are working on, refer to Chapter 10, Barcode Technologies to get some hands-on information.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 71

8.46. SymbolMarginTop, SymbolMarginBottom,
SymbolMarginLeft, SymbolMarginRight Properties

Description
These four properties control the margins around the symbol boundary (including barcode, human readable
and comment).

Syntax
HRESULT get_SymbolMarginTop(LONG* pVal);
HRESULT put_SymbolMarginTop(LONG val);
HRESULT get_SymbolMarginBottom(LONG* pVal);
HRESULT put_SymbolMarginBottom(LONG val);
HRESULT get_SymbolMarginLeft(LONG* pVal);
HRESULT put_SymbolMarginLeft(LONG val);
HRESULT get_SymbolMarginRight(LONG* pVal);
HRESULT put_SymbolMarginRight(LONG val);

Remarks
These four parameters control the margins around the symbol (barcode, human readable and comment).

72 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.47. TexAlignment Property

Description
Returns or sets a value indicating how the human readable text is aligned.

Syntax
HRESULT get_TexAlignment(LONG* pVal);
HRESULT put_TexAlignment(LONG val);

Remarks
This property controls how the text in the human readable portion is aligned. Valid alignment choices are:

Table 8.10. TexAlignment Options

Constant Value Description

mbxAlignLeft 0 Left alignment (default). Align the text with left edge of the
comment box.

mbxAlignRight 1 Right alignment. Align the text with the right edge of the
comment box.

mbxAlignCenter 2 Center alignment. Align the text with the center of the comment
box

mbxAlignJustify 3 Justify alignment. Align the text to both edge of the comment
box.

Because of the unique character arrangement in UPC/EAN symbologies, this property does not apply on
those symbologies: UPC-A, UPC-E, EAN-13 and EAN-8.
The barcodes below illustrate the effects of TexAlignment:

Note When our first Barcode component product was released, the property
was misspelled as TexAlignment instead of the correct spelling TextAlignment. For
compatibility reasons we keep using the misspelled word as the property name.
Check the spelling when you find that your application did not achieve the desired
result.

See Also
Section 8.20, “Font Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 73

Section 8.44, “ShowHRText Property”

74 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.48. TextOnTop Property

Description
Returns or sets a value that determines whether the human readable text is placed above the barcode image
or below the image.

Syntax
HRESULT get_TextOnTop(bool* pVal);
HRESULT put_TextOnTop(bool val);

Remarks
The default value for TextOnTop is FALSE which places the human readable text below the barcode. To place
the human readable text above the barcode, set TextOnTop to TRUE.
Two-dimensional symbologies (PDF417, Data Matrix and MaxiCode) do not support human readable text.
This property has no effects when the current symbology is PDF417, Data Matrix or MaxiCode.

See Also
Section 8.20, “Font Property”
Section 8.44, “ShowHRText Property”
Section 8.47, “TexAlignment Property”

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 75

8.49. UccEanOptionalCheckDigit Property

Description
Deprecated since version 3.4.

Syntax
HRESULT get_UccEanOptionalCheckDigit(bool* pVal);
HRESULT put_UccEanOptionalCheckDigit(bool val);

Remarks
Before version 3.4, this
This property kicks in only when all the following conditions are met: (1) the current symbology is set to
UCC_EAN_128. (2) the data element contains an AI of 00 (SSCC-18) or 01(SCC-14). (3) the data length is 1ess
than the required. The check digit is calculated based on Mod 10 algorithm and appended to the end of the
data part. The check digit also appears in the human readable text.
For example, when the property UCC_EAN_128 is set to TRUE, the data (01)3001234567890 becomes
(01)30012345678906 where the last digit of 6 is the calculated mod10 check digit.

76 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.50. ZoomRatio Property

Description
Returns or sets the value that determines the actual display size of the control.

Syntax
HRESULT get_ZoomRatio(double* pVal);
HRESULT put_ZoomRatio(double val);

Remarks
When the AutoSize is FALSE, the container controls the size of the display area. The Barcode DLL displays
itself to the full extent in the display area prescribed by the container while keeping the aspect ratio. The user
can not set ZoomRatio under this mode; instead the user changes the property by dragging the tracking box
using the mouse pointer.When the AutoSize property is set to TRUE, the Barcode DLL decides the size of the
display area. You can change the size of the display area by modifying the natural size, or the ZoomRatio. To
make sure that barcode created has a high quality, do not set ZoomRatio to any values other than 1 at the
print time. To modify the barcode size it is highly recommended to do so through length properties, such as
NarrowBarWidth, BarHeight, and PDF417ModuleHeight etc.

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 77

8.51. About Method

Description
Display the About Dialog.

Syntax
void mbxAbout(HANDLE handle);

Remarks
The About dialog displays the version information. It also displays the license information used to create the
barcode object.

78 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.52. ExportImage Method

Description
Exports the image to a graphics file with the specified format. This allows other programs to use the barcode
images generated.

Syntax
HRESULT mbxExportImage(HANDLE handle,
 const char* lpszFileName, LONG imageFormat)
HRESULT mbxExportImage2(HANDLE handle,
 IDispatch* pStream, LONG imageFormat)

Remarks
Exports the image into the file specified by the filename in a standard format. Barcode DLL supports the
export to the following graphic formats:

Constant Value Description

mbxFormatBMP 0 Windows bitmap

mbxFormatJPG 1 JPEG

mbxFormatGIF 2 GIF

mbxFormatTIF 3 TIFF

mbxFormatPNG 5 PNG

mbxFormatEMF 6 EMF (Windows Enhanced MetaFile)

mbxFormatWMF 7 WMF (Windows MetaFile)

Use ExportImage to save the barcode image to a disk file or a Streamobject, with the specified graphic format. If
the file already exists, the method overwrites the file.
When Barcode DLL exports to EMF format, the resolution of the default printer is used as the basis to create
the barcode. If you use the EMF handle to print to a low resolution printer, set this printer as default before
calling ExportImage.
When Barcode DLL exports to WMF format, a high resolution of 1440 dpi is assumed. A high resolution
printer is needed to replay the WMF handle.
All other file formats are raster image format. The property RasterImageResoluton determines the resolution
to use during the rasterization. PNG or GIF are preferred formats because they are lossless and compressed
well for barcode images.

Note The WMF file format does not contain frame size information. To find
out the exact size, retrieve LabelHeight and LabelWidth from the object. The bitmap
rendering process utilizes printer drivers. To avoid rounding errors between the
drawing units (target resolution) and the device units (for text measurement), we
recommend that you have the printer driver installed on the computer that creates
the barcode image. For example, if you create bitmap images targeting a thermal
printer (203 dpi), you should install such a printer driver on the computer you
are working. During the ExportImage process, the printer driver is consulted to
make sure that the bitmap created reflects the actual print out. You do not need

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 79

to connect the printer to the computer. The barcode quality is ensured when
RasterImageResolution is set to a value compatible with screen or an installed printer
device.

Note The behavior of this method changed in version 3.6.

In versions before 3.6, the Save method overwrite the file if it exists. After 3.6, an
existing file is overwritten only when all conditions below are true:

• None of the following attribute bits is set: read-only, hidden and system.
• The extension of the file must be one of the following: bmp, jpg, jpeg, gif, tif,
tiff, png, emf or wmf.

If any of the conditions is not met, the method returns an error.
However, if the path specified does not exist, a new file will be created, and the rules
on the attributes and extensions do not apply.

See Also
Section 8.40, “RasterImageResolution Property”
Chapter 6, Working with Low Resolution Devices

80 CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE

8.53. Load Method

Description
Load the Barcoce ActiveX object from a file, in binary or XML format.

Syntax
HRESULT mbxLoad(HANDLE handle,
 const char* lpszFileName, LONG persistFormat);

• lpszFileName
A string that represents the complete path name of the file where the object is to be saved.

• PersistFormat
A PersistFormatEnum value that specifies the format in which the object is to be saved (XML or
Bianry). The default value is mbxPersistBinary.

Remarks
The Load method loads the property data and draws the barcode image based on the data loaded. The
PersistFormat can be one of these values:

Table 8.11. PersistFormat Options (Load method)

Constant Value Description

mbxPersistBinary 0 Binary Format

mbxPersistXML 1 XML Format

CHAPTER 8 BARCODE OBJECT PROPERTIES AND METHODS
REFERENCE 81

8.54. Save Method

Description
Saves the Barcoce ActiveX object in a file, in binary or XML format.

Syntax
HRESULT mbxSave(HANDLE handle,
 const char* lpszFileName, LONG persistFormat);

• lpszFilename
A string that represents the complete path name of the file where the object is to be saved.

• PersistFormat
A PersistFormatEnum value that specifies the format in which the object is to be saved (XML or Bianry).
The default value is mbxPersistBinary.

Remarks
The Save method saves the property data into a disk file or a Streamobject in binary or XML format. The
PersistFormat can be one of these values:

Table 8.12. PersistFormat Options (Save method)

Constant Value Description

mbxPersistBinary 0 Binary Format

mbxPersistXML 1 XML Format

If the file already exist, the method overwrites the file.

Note The behavior of this method changed in version 3.6.

In versions before 3.6, the Save method overwrites the file if it exists. After 3.6, an
existing file is overwritten only when all conditions below are true:

• None of the following attribute bits is set: read-only, hidden and system.
• The extension of the file must be one of the following: bax, bax3, mbx or xml.

If any of the conditions is not met, the method returns an error.
However, if the path specified does not exist, a new file will be created, and the rules
on the attributes and extensions do not apply.

See Also
Section 8.53, “Load Method”

Chapter 9. Error Handling
Barcode DLL reports two kinds of errors: operational errors and encoding errors. They are handled in
different ways in Barcode DLL.
Operational errors occur when an operation fails or a property is set to an invalid value. The error is
reported through the return code of the function. Your program can then retrieve the error message through
GetLastBarcodeError function.
You can tell if the function operates as expected by comparing the return code with zero. If the return code is
a negative number, the operation fails.
For performance reasons Barcode DLL does not attempt to encode every time that a property changes,
especially for two dimensional symbologies. There is no fixed algorithm to tell whether the size specified can
hold the data until the program encodes with all the properties specified. The encoding errors are reported at
the time of the actual rendering. An image containing the error codes and messages is rendered in the place of
the barcode, as the image below illustrates:

The error message tells that the size specified is too small to hold the data encoded. It also tells you in order
to encode the current data, the minimum size ID is 11 (mbxDMTargetSize_40X40). Normally you handle
encoding errors at design time by modifying the properties.

9.1. Error Codes
Operational Error codes specific to Barcode DLL are listed below:

Table 9.1. Error Codes (Operational)

Value Description

6101 This symbology is not supported by the current version of Morovia Barcode
DLL.

6102 The message is either empty or contains invalid character for the chosen
symbology.

6103 The measurement unit must be either English (0) or Metric (1).

6104 The Zoom Ratio should ranged between 0.1 and 100

6105 The NarrowToWideRatio should be between 2.0 and 3.0

6107 Failed to overwrite file or create the new file. It may be caused by
insufficient privilege or disk is full.

6108 Invalid Raster Image Resolution. The resolution must be greater than 50.

6109 The label size you specified is invalid, or you can not edit the size under the
current mode.

84 CHAPTER 9 ERROR HANDLING

Value Description

6112 The current symbology required fixed length. The length you specified does
not meet this requirement.

6113 The message string contains characters that can not be encoded under the
current symbology.

6114 The object can not be loaded from the media specified. See Error Log for
details.

6115 The object failed to save itself to the specified media.

6116 Invalid value for BarHeight property.

6117 The MaxicodeZipCode property must consist a valid zip code with up to 6
alpha-numeric characters.

6118 The MaxicodeCountryCode must between 000 and 999

6119 The value range for MaxicodeMode must be between 2 and 6.

6120 The value range for MaxicodeClass must be between 000 and 999.

6121 Error happens during the PDF417 encoding process. For more information
retrieve the Error object.

6122 Can not generate bitmap handle. Possible reasons include insufficient
memory, too big size of the bitmap etc.

Table 9.2. Error Codes (Encoding)

Value Description

10 The AI portion of an EAN-128 structure must be numeric. (EAN-128)

11 The data portion of the EAN-128 data must be alpha-numeric. (EAN-128)

12 Invalid UCC/EAN-128 structure. Check whether the AI and field ID are
enclosed with parenthesis. (EAN-128)

13 The length of the data portion of the EAN-128 is incorrect. (EAN-128)

14 Based on the AI, the data portion must be numeric. However, this is not the
case in the message encoded. (EAN-128)

20 No control block was found in the message. (PDF417)

21 Invalid Raster Image Resolution. The resolution must be greater than 50.

22 Error in the segment index. Either the segment index is not numeric, or the
index is bigger than the total segment count. (PDF417)

23 Error in total segment count field. (PDF417)

24 Incorrect MacroPDF417 optional field format. (PDF417)

30 The size required is too small to hold the data. (PDF417, Data Matrix)

40 GLI must be 6 digits in the range between 0 and 811,799. (PDF417)

41 The security level is too high to encode all the data. (PDF417)

50 A required structural append field is missing. (Data Matrix Structural
Append)

CHAPTER 9 ERROR HANDLING 85

Value Description

51 No control block was found in the message. (Data Matrix Structural
Append)

52 Error in the sequence indicator field. Either it is not numeric, or the value is
out of range. (Data Matrix Structural Append)

53 Error in the total number of total symbols field. This field can only be a
number between 1 and 16. (Data Matrix Structural Append)

54 Invalid file ID. Either it contains invalid characters, or the value is out of
range. (Data Matrix Structural Append)

60 Error in the specified ECI. Either it contains invalid characters, or the value
is out of range. (Data Matrix ECI)

70 Macro 05 or Macro 06 should appear at the first position of the input and
should not be used in conjunction with structural append. (Data Matrix
Macro)

71 Reader programming ~3 should appear at the first position of the input and
should not be used in conjunction with structural append. (Data Matrix
Reader Programming)

200 Carrier message prefix detected but not all required fields are present.
(MaxiCode)

Chapter 10. Barcode Technologies

10.1. Introduction
Barcode has been widely adopted across all major industries. A conventional barcode is a machine readable
symbol consisting of a series of parallel, adjacent bars and spaces. The basic barcode structure features
leading and trailing quiet zones, a start character, one or more data characters, one or more check characters
(optional) and a stop character.
Barcode has a long development history that spanned half a century. During the evolution process, many
formats have been developed and adopted by industries. Around a dozen of them are actively used today.
The term “symbology” is the scientific name for the barcode format. Different symbologies have different
characteristics, such as the encoding efficiency and character set. The character set defines what kind of
data the symbology encodes. Typically there are four types of character sets: (1) numeric. Only digits
can be encoded. (2) alpha-numeric. The symbology is capable of encoding numbers, letters plus several
punctuations. (3) full ASCII. All characters in the ASCII set, with value between 0 and 127, can be encoded.
(4) Binary. Binary character set includes all 256 characters in a 8-bit single byte character set. Most of two
dimensional symbologies are capable of encoding arbitrary binary data.
Some symbologies may impose length requirements. For example, UPC-A encodes the numeric data of exact
12 digits.
Two dimensional symbologies are usually capable of encoding thousand of characters.
Barcode DLL supports the following symbologies:

Table 10.1. Symbologies Supported by Barcode DLL

Symbology Also Known As

Code 39 Code 3 of 9, AIAG, USS Code 39

Code39 Full ASCII Code 39 Extended

HIBC Code 39 HIBC, LOGMARS

Codabar Rationalized Codabar

Code 93

Code 128 USS-128, C-128

GS1-128 UCC 128, EAN 128

Interleaved 2 of 5 ITF, ITF-14, I 2 of 5

UPC-A

UPC-E

EAN-13

EAN-8

Bookland

Telepen, Telepen Numeric

Postnet, Planet

88 CHAPTER 10 BARCODE TECHNOLOGIES

Symbology Also Known As

Royal Mail UK Postal Code, RM4SCC

MSI/Plessey Plessey Code

Code 25 Industry 25, Code 2 of 5

Code 11

PDF417

DataMatrix

MaxiCode UPS barcode

DataBar RSS-14, DataBar-14, DataBar
Omindirectional

DataBar Truncated RSS-14 Truncated, DataBar-14 Truncated

DataBar Stacked RSS-14 Stacked, DataBar-14 Stacked

DataBar Stacked
Omnidirectional

RSS-14 Stacked Omnidirectional

DataBar Limited RSS-14 Limited

DataBar Expanded RSS Expanded, DataBar Expanded
Stacked, RSS Expanded Stacked

You can purchase symbology standards directly from AIM Inc. The web address of AIM is http://
www.aimglobal.org1.

10.2. Code 39
Code 39 (also known as USS Code 39, Code 3 of 9) is the first alpha-numeric symbology developed to be used
in non-retail environment. It is widely used to code alphanumeric information, such as the model number etc.
It is designed to encode 26 upper case letters, 10 digits and 7 special characters:

A, B, C, D, E, F, G,
H, I, J, K, L, M, N, O, P, Q,
R, S, T, U, V, W, X, Y, Z
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
-, ., *, $, /, +, %, SPACE.

Each code 39 symbol begins with a start character and ends with a stop character. Traditionally the start/stop
characters are represented by asterisk character (*). Due to this reason, some applications include asterisks in
the human readable text. The asterisks are not part of the encoded message and should not appear within the
message.

Code 39 allows an optional checksum digit based on modulo 43 algorithm. The health industry has adopted
the use of the check character for health applications and these types of barcodes are often referred as HIBC.

 Property Code39OptionalCheckDigit specifies whether an additional check digit should be added to the
barcode. Another property, Code39StartStopChars, when it is set to TRUE, adds the traditional start/stop
characters (*) to the beginning and the end of the human readable text.

1 http://www.aimglobal.org

http://www.aimglobal.org
http://www.aimglobal.org
http://www.aimglobal.org

CHAPTER 10 BARCODE TECHNOLOGIES 89

10.3. Code 39 Full ASCII
The Code 39 Full ASCII (sometimes also referred as Code 39 extended) is an extension to normal code 39.
It is capable of encoding all 128 ASCII characters. It uses shift characters to combine two normal code 39
characters to encode a character not in the normal code 39 character set. The barcode generated is compatible
with normal code 39 so the scanner must be configured to Full ASCII mode to read the barcode correctly.

Code 39 Full ASCII supports entering control characters using special character input method. You can use
a back slash \ plus 3-digit decimal ASCII code to enter a control character. For example, the following input
encodes digits 123, followed by a NUL character and letters abc:

Data Input: 123\000abc

10.4. Code 39 HIBC
Code39 HIBC is exactly the same as normal Code39, with Code39OptionalCheckDigit property set to true.
The standard also says that the starting character in the message must be a plus (+) symbol. Barcode DLL
automatically adds this plus sign (+) if the encoded message does not meet this requirement.
The HIBC standard requires that the checksum digit to appear in the human readable. To satisfy this
requirement, your program should explicitly set property ShowcheckDigit to TRUE to create a compliant HIBC
symbol.
Setting Code39OptionalCheckDigit to FALSE does not affect the resulted barcode.

90 CHAPTER 10 BARCODE TECHNOLOGIES

10.5. Codabar
Codabar is a variable length symbology which encodes a character set of 16 letters (0-9, -, $, :, /, +). It is
dubbed as NW-7 in Japan. You may choose one of these four start/stop characters in your symbol: A, B, C and
D. If you do not specify the start/stop characters, Barcode DLL uses A and B as the start/stop characters,
respectively. No check digit is required.

10.6. Code 93
Code 93 is a variable length symbology that is capable of encoding all 128 ASCII characters. Code 93 offers
higher density than Code 39. It has the same native character set as Code 39 (43 characters) but it uses
additional 4 shift characters to encode other characters. Code 93 features 2 checksum characters. Start/Stop
characters are also required.
Code 93 supports special character input method. See Code 39 Full ASCII section for details on how to escape
control characters.

10.7. MSI/Plessey, Code 25 and Code11
These are rather obsolete symbologies which only encode numeric data. There is no advantage to use them
except for application backward compatibility. More information can be found at Morovia barcode library at
http://www.morovia.com/education/2.

2 http://www.morovia.com/education/

http://www.morovia.com/education/
http://www.morovia.com/education/
http://www.morovia.com/education/

CHAPTER 10 BARCODE TECHNOLOGIES 91

10.8. UPC-A,UPC-E and UPC Supplements
The UPC-A barcode is the most common and well-known symbology in North America. You can find it on
the cartons of virtually every consumer goods in your local supermarket, as well as books, magazines, and
newspapers. A short form is called UPC-E. Each symbol may have 2-digit or 5-digit supplement to encode
additional information.

UPC-A encodes 11 digits of numeric data along with a trailing check digit, for a total of 12 digits of barcode
data.
A UPC-A number consists of four areas: (1) The Number System; (2) The manufacturer code; (3) the product
code; (4) The check digit. Normally the number system digit is printed to the left of the barcode, and the
check digit to the right. The manufacturer and product codes are printed just below the barcode, separated by
the guard bar.
The UPC-E barcode is the short form representation of a UPC number. It reduces the data length from 12
digits to 6 digits by compressing the extra zeros. It is suited for identifying products in small packages.
A UPC-E barcode has 6 digits with an implied number system 0. The first 5 digits are calculated based on a
conversion algorithm described below. The last digit is the check digit of the original UPC-A symbol.
Both UPC-A and UPC-E symbols allow for a supplemental two or five digit add-on barcode. This add-on
barcode usually encodes the price or a sequence number. To include a supplemental message, append it to the
main message with a vertical bar (|) separating it from the main message. The supplemental message must
consist of exact two or five digits.

Table 10.2. Examples of UPC-A, UPC-E and Supplement

Message Symbol Created

90123678812 UPC-A

90123678812|02 UPC-A with 2-digit add on

0123456 UPC-E

0123456|95000 UPC-E with 5-digit add on

92 CHAPTER 10 BARCODE TECHNOLOGIES

10.9. EAN-13, EAN-8 and EAN Supplements
EAN is designed by the International Article Numbering Association (EAN) in Europe. It is an extension
to UPC-A to include the country information. The only difference between UPC-A and EAN-13 is that the
number system in UPC-A is a single digit varying from 0 through 9 whereas an EAN-13 number system
consists of two digits ranging form 00 to 99.

EAN-13 encodes 12 digits of numeric data along with a trailing check digit, for a total of 13 digits data.
An EAN-13 number consists of four areas: (1) the Number System; (2) the manufacturer code; (3) the product
code; (4) the check digit. Normally the number system digit is printed to the left of the barcode, and the check
digit to the right. The manufacturer and product codes are printed just below the barcode, separated by the
guard bar.
EAN-8 is the short version of EAN-13, the same as UPC-E vs. UPC-A. While they look very similar, some
differences exist. UPC-E does not explicitly encode the first digit (NS) while EAN-8 encodes all 8 digits. From
barcode encoding/decoding perspective, an EAN-8 is not compatible with UPC-E. Moreover, although a UPC-
E number can be converted back to UPC-A, this is not the case for EAN-8. There is no defined method for
conversions between EAN-13 to EAN-8. An EAN-8 number is assigned in the same way as EAN-13.
An EAN-8 number contains 7 digits of message plus 1 check digit. The first two or three digits identify the
numbering authority; the remaining 4 or 5 digits identify the product.

Table 10.3. Examples of EAN-13, EAN-8 and Supplement:

Message Symbol Created

97802161594 EAN-13

978020161594|02 EAN-13 with 2-digit add on

71245126 EAN-8

71245126|95000 EAN-8 with 5-digit add on

CHAPTER 10 BARCODE TECHNOLOGIES 93

10.10. ISBN/Bookland
The International Standard Book Number (ISBN) has been invented for more than 30 years. It has experienced
exponential growth and remarkable success. Today, every book, magazine, cassette and CD bear an ISBN
number. Every item to be sold in bookstore is required to furnish an ISBN. The ISBN is used extensively
by publishers, retailers as wells as libraries to manage inventory. The ISBN is represented through an EAN
barcode, a.k.a. Bookland barcode plus an optional 5-digit (2-digit for magazines) add-on.

An ISBN is a 10 digit number preceded by the letters ISBN. The text is usually printed with an OCR-A font.
The ten-digit number is divided into four parts of variable length, which are separated by hyphens or spaces.
The four parts are Group Identifier, Publisher Identifier, Title Identifier and check digit respectively. Note that
the length of each part is not fixed, though the total length must be 10.
A Bookland symbol may have an optional 2-digit or 5-digit add-on symbol. To add the supplement, add them
at the end of the main message and separate the two parts with a vertical bar(|), in the same way as the UPC
and EAN supplements. For example, to encode an ISBN number 0-201-61595-9 with pricing information
53995, set the Message property to 0-201-61595-9|53995.

Note on 13-digit ISBN
Beginning on January 1, 2007, all 10-digit ISBNs are required to be re-expressed as a 13-digit number
(EAN-13). To convert a 10-digit ISBN to 13-digit EAN number, drop the last checksum digit of the 10-digit
ISBN number and add prefix 978 at the beginning. Calculate the EAN-13 check digit based on the result and
append this checksum digit to the end of the result. To create the barcode, use EAN13 symbology instead and
assign the 13-digit ISBN number to the message property.

94 CHAPTER 10 BARCODE TECHNOLOGIES

10.11. Code 128

Code 128 is a high-density alpha-numeric symbology. Since introduced in early 1980s, it has gained wide
popularity in many industries. UCC/EAN derives its retail carton tracking standard UCC/EAN 128 based on
Code 128 symbology.
Code 128 is a variable length, continuous symbology with multiple element widths. Every Code 128 symbol
has a check character. Each character is encoded with three bars and spaces, in total 11 modules.
In the most recent standard ISO/IEC 15417, Code128 is extended to encode all 256 characters of a single-byte
character set3. The default character set is ISO 8859-1 (Latin Alphabet No. 1).
Code 128 standard also defines four function codes for special purposes. FNC2 is used to tell barcode reader
to store the data and transmit with next symbol; FNC4 is used as a latch code word to switch into extended
ASCII mode. FNC3 is reserved for future use. FNC1 is used in UCC/EAN128 to act as UCC/EAN-128 identifier
and field delimiter.

10.11.1. How Barcode DLL Implements the Code128
Barcode DLL allows encoding all 256 characters as well as 4 special symbol characters: FNC1, FNC2, FNC3and
FNC4.
Internally Code128 defines 3 character sets (A, B and C) to allow efficient encoding. Each character set contains
103 characters (including special symbol characters). A code128 symbol starts with one character set and
latches to a different set with a latch codeword. Since these three character sets overlap, it is possible to get
different barcodes with the same data encoded.
To allow space efficiency, during the encoding process, Barcode DLL selects the proper character sets and
inserts necessary shift characters to make the symbol generated as short as possible.
Code128 requires a checksum character to ensure the data integrity. The checksum character has no meaning
to the end user. Barcode DLL does not transmit the checksum digit back to the human readable text.

Note Barcode DLL always tries to create the shortest barcode. For example, if
Barcode DLL sees that some portion of the data is best fit encoded with Code128 C it
automatically select character set C. The end user does not have the control on how
the data is encoded.

10.11.2. Tilde Codes
Under some circumstances it is necessary to represent some characters with an ASCII-only format. This kind
of representation format is called escape sequence. For example, the four special Code128 symbol characters,
FNC1~FNC4, do not have corresponding ASCII values. Consequently the only way to enter them into the
Message property is through their escaped forms. Some applications and programming environments may
only accept printable ASCII characters, and control characters must be escaped.
Tilde code sequence is the only escape method supported in Barcode DLL version 3.2 and above. The special
character input method (escaping a character using a back-slash character followed by 3-digit character value)
present in previous versions is now deprecated.

3Published in year 2000, this standard is relative new to the industry. Not all scanners in the market support this feature.

CHAPTER 10 BARCODE TECHNOLOGIES 95

The tilde code consequences used in Code128 are listed as below:
~dnnn

When nnn corresponds to a numeric value between 0 and 255, the tilde code sequence represents a
character with value equal to nnn. For example, ~d032 represents a space character.

~~
Represents a tilde (~) character.

~1
Represents a FNC1 character. The tilde escape sequence can appear anywhere in the input.

~2
Represents a FNC2 character.

~3
Represents a FNC3 character.

~4
Represents a FNC4 character. FNC4 is used to encode extended ASCII characters. You do not need to enter
the FNC4 in most circumstances. Just pass the extended characters you'd like to encode.

~X
Represents a character value from 0 to 26. Replace the X like in the following example ~@ means character
ascii 0, ~A means character 1, ~B means character 2, ~C means character 3 and so on.

Note Due to the fact that each symbology encodes different character set, the tilde
code sequence varies from symbology to symbology. Refer to the tilde codes section
of each symbology to understand how to escape the character.

96 CHAPTER 10 BARCODE TECHNOLOGIES

10.12. UCC/EAN-128

10.12.1. Introduction
UCC/EAN-1284 encodes structured data proposed by various industry standard bodies and authorized by
GS1 organization. Each data type is identified with a numeric value, called Application Identifier (AI). Multiple
AIs and values can be concatenated together into one barcode, such as:
(01)19421123450011(15)991231(10)101234

The data above contains multiple AIs and values:
• 01 indicates that the value followed 19421123450011 is a SCC-14 number. 5

• 15 is the AI for Sell by Date. The value followed 991231 indicates that the Sell By Date is December 31,
1999.

• 10 is the AI for Batch Number. According to the specification, it is a variable length AI. Here the value
is 101234.

The AI value determines the meaning and the length of the value part. Many of them encode a predefined
length of data. For example, the SCC14 requires exact 14 digits and the Sell By Date requires exact 6 digits in
YYMMDD format.
When the data length can be derived from AI, it is not necessary to add field separator (FNC1) in the barcode
to separate two adjacent fields. However, if the first field has a variable data length, such a field separator is
required. And in many applications it is often desirable to have a field separator between two fixed-length
fields. The Code128 symbol character FNC1 serves this purpose.

10.12.2. How Barcode DLL Implements UCC/EAN-128
To understand each data field, Barcode DLL requires you to enter the data in a special format. The AI must be
enclosed with parentheses. From the AI Barcode DLL knows whether a field has a fixed length or a variable
length. For all variable-length fields, Barcode DLL inserts field separator unless it ends the input.
Barcode DLL also performs data validation on the AI and the data, if the AI is known to the program.

Table 10.4. List of Known AIs

AI Name Constraint Short Name

00 SSCC (Serial Shipping Container Code) n2+n18 SSCC

01 Global Trade Item Number n2+n14 GTIN

02 GTIN of Trade Items Contained in a
logistic unit

n2+n14 CONTENT

10 Batch or lot number n2+an..20 BATCH/LOT

11 Production date (YYMMDD) n2+n6 PROD DATE

12 Due date (YYMMDD) n2+n6 DUE DATE

13 Packaging date (YYMMDD) n2+n6 PACK DATE

15 Best before date (YYMMDD) n2+n6 BEST BEFORE or SELL
BY

17 Expiration date (YYMMDD) n2+n6 USE BY OR EXPIRY

20 Product variant n2+n2 VARIANT

4As UCC/EAN orgnization changed its name to GS1, now the symbology is also called as GS1-128.

CHAPTER 10 BARCODE TECHNOLOGIES 97

AI Name Constraint Short Name

21 Serial number n2+an..20 SERIAL

22 Secondary data for specific health industry
products

n2+an..29 QTY/DATE/BATCH

240 Additional product identification assigned
by the manufacturer

n3+an..30 ADDITIONAL ID

241 Customer part number n3+an..30 CUST. PART NO.

242 Made-to-Order Variation Number n2+n..6 Variation Number

250 Secondary serial number n3+an..30 SECONDARY SERIAL

251 Reference to source entity n3+an..30 REF. TO SOURCE

253 Global Document Type Identifier n3+n13+n..17 DOC. ID

254 GLN Extension component n3+an..20 GLN EXTENSION

30 Variable count n2+n..8 VAR. COUNT

310n-369n (Trade and logistic measurements) n4+n6 --

337n Kilograms per square metre n4+n6 KG PER m2

37 Count of trade items contained in a logistic
unit

n2+n..8 COUNT

390(n) Amount payable - single monetary area n4+n..15 AMOUNT

391(n) Amount payable - with ISO currency code n4+n3+n..15 AMOUNT

392(n) Amount payable for a Variable Measure
Trade Item - single monetary unit

n4+n..15 PRICE

393(n) Amount payable for a Variable Measure
Trade Item - with ISO currency code

n4+n3+n..15 PRICE

400 Customer's purchase order number n3+an..30 ORDER NUMBER

401 Consignment number n3+an..30 CONSIGNMENT

402 Shipment Identification Number n3+n17 SHIPMENT NO.

403 Routing code n3+an..30 ROUTE

410 Ship to - deliver to Global Location
Number

n3+n13 SHIP TO LOC

411 Bill to - invoice to Global Location Number n3+n13 BILL TO

412 Purchased from Global Location Number n3+n13 PURCHASE FROM

413 Ship for - deliver for - forward to Global
Location Number

n3+n13 SHIP FOR LOC

414 Identification of a physical location Global
Location Number

n3+n13 LOC No

415 Global Location Number of the Invoicing
Party

n3+n13 PAY

420 Ship to - deliver to postal code within a
single postal authority

n3+an..20 SHIP TO POST

98 CHAPTER 10 BARCODE TECHNOLOGIES

AI Name Constraint Short Name

421 Ship to - deliver to postal code with Three-
Digit ISO country code

n3+n3+an..9 SHIP TO POST

422 Country of origin of a trade item n3+n3 ORIGIN

423 Country of initial processing n3+n3+n..12 COUNTRY - INITIAL
PROCESS.

424 Country of processing n3+n3 COUNTRY - PROCESS.

425 Country of disassembly n3+n3 COUNTRY -
DISASSEMBLY

426 Country covering full process chain n3+n3 COUNTRY - FULL
PROCESS

7001 NATO stock number n4+n13 NSN

7002 UN/ECE meat carcasses and cuts
classification

n4+an..30 MEAT CUT

703(s) Approval number of processor with ISO
country code

n4+n3+an..27 PROCESSOR # s4

7003 Expiration Date and Time n4+n10 EXPIRY DATE/TIME

8001 Roll products - width, length, core
diameter, direction, and splices

n4+n14 DIMENSIONS

8002 Electronic serial identifier for cellular
mobile telephones

n4+an..20 CMT No

8003 Global Returnable Asset Identifier n4+n14+an..16 GRAI

8004 Global Individual Asset Identifier n4+an..30 GIAI

8005 Price per unit of measure n4+n6 PRICE PER UNIT

8006 Identification of the component of a trade
item

n4+n14+n2+n2 GCTIN

8007 International Bank Account Number n4+an..30 IBAN

8008 Date and time of production n4+n8+n..4 PROD TIME

8018 Global Service Relation Number n4+n18 GSRN

8020 Payment Slip Reference Number n4+an..25 REF No

8100 GS1-128 Coupon Extended Code - NSC +
Offer Code

n4+n1+n5 -

8101 GS1-128 Coupon Extended Code - NSC +
Offer Code + end of offer code

n4+n1+n5+n4 -

8102 GS1-128 Coupon Extended Code - NSC n4+n1+n1 -

90 Information mutually agreed between
trading partners (including FACT DIs)

n2+an..30 INTERNAL

91-99 Company internal information n2+an..30 INTERNAL

CHAPTER 10 BARCODE TECHNOLOGIES 99

If the AI is not listed in the table above 6, Barcode DLL can not know whether its data length is fixed or
variable. Thus, Barcode DLL treats the data as if its data length is variable and inserts a field separator FNC1
when this field does not end the symbol.
For example, suppose that you set Message to (01) 19421123450011(8019)123456(15)051210. Barcode
DLL understands that 01 AI requires fixed-length 14 digits data and AI 15 requires fixed-length 14 digits data.
However, Barcode DLL does not understand AI 8019 and treats this field as if it has a variable length. Barcode
DLL inserts a field separator at the end of this field (before AI 15).
Assuming that AI 8019 requires a fixed data length, you can tell Barcode DLL that the field has a fixed data
length by appending a tilde character ~ at the end of the field. For example, you can assign the value below:
(01)94211234500122(8019)123456~(15)051210

When Barcode DLL sees the ~, it treats the current field as fixed-length.
On the other side, if a known AI has a fixed data length but you'd like to have a field separator at the end of
the field, you can do so by adding an exclamation character at the end of field, such as:
(01)94211234500122!(8019)123456(15)051210

It forces a field separator to appear after the SCC14 number even AI 01 has a fixed data length and the field
separator is not required. Sometimes this field separator is desirable because it is easier for the application to
parse the input.
See the table below for the comparison among results produced by different inputs. The[GS] is the scanner
output for FNC1 character.

Barcode Data input/Scanner output

(01)94211234500122(8019)123456~(15)051210
0194211234500122801912345615051210

(01)94211234500122!(8019)123456(15)051210
0194211234500122[GS]8019123456[GS]15051210

(01)94211234500122(8019)123456(15)051210
01942112345001228019123456[GS]15051210

10.12.3. Auto Check Digit
Before version 3.4, Barcode DLL calculates mod10 check digits on SCC-14 and SSCC-18 numbers, but only
When the property UccEanOptionalCheckDigit is TRUE. This behavior has been changed since version 3.4. Now
the program calculates mod 10 check digit automatically, regardless the value of UccEanOptionalCheckDigit.
This renders this property useless.
Barcode DLL performs check digit calculation on those AIs: 00, 01, 02, 410, 411, 412, 413, 414, 415, and 8018.

10.12.4. Input Format

6This table was updated in version 3.4 to reflect the changes made since the first version came out.

100 CHAPTER 10 BARCODE TECHNOLOGIES

To create the barcode correctly you must enclose the AI with parentheses (). Barcode DLL only accepts
numeric AI values. It reports an error when encountering a non-numeric character in the AI part. If AI does
not appear in the known list (see the table above), and you do not want the data treated as variable length,
you should tell so by appending a tilde character at the end of the field.
Sometimes, it is desirable to have the data separated by spaces in the human readable text. For
example, you may like to see the human readable text (8101) 0 54321 1200(21)123456 instead of
(8101)0543211200(21)123456. You can create the desirable human readable text by entering the message
exactly like the one you'd like the human readable to be. Barcode DLL ignores the spaces during the
encoding, but preserves them in the human readable text, as the one below illustrates:

10.12.5. Validation
Barcode DLL performs the following validations during the encoding process:

• Check whether the AI is numeric.
• Check whether a data part follows the AI.
• If the AI is known to Barcode DLL and requires a fixed length of data part, check if the data part has

the correct length.
• Check whether the AI is enclosed with parentheses.
• If the AI is known to Barcode DLL and requires only numeric or alpha-numeric data, check if the data

part meets the requirement.
• If the AI is know to Barcode DLL and requires variable length of the data, check if the length of the data

exceeds the maximum size allowed.

10.12.6. Non-standard Application
If your application does not pass the validation, you can not use UCC/EAN-128 to encode the data.
Nevertheless, since UCC/EAN-128 encoding is based on Code128 symbology, you can encode the data
directly with Code128. Here are several hints you may consider when converting the EAN-128 data into a
Code128 input:

• An EAN-128 barcode starts with a FNC1 character. FNC1 can be entered with tilde code sequence ~1.
• If you'd like to have the field separator encoded between two adjacent fields, using FNC1 character to

separate two fields.
• Code128 is capable of encoding spaces. Do not enter spaces in the input if you do not want them

appear in the barcode.
• You may use tilde code sequences to enter extended ASCII characters. See Section 10.11, “Code 128” for

details.
For example, Code128 with message ~18101054321120021123456 produces the exact barcode as the one
using UCC/EAN-128 with message (8101)0 54321 1200(21)123456.

CHAPTER 10 BARCODE TECHNOLOGIES 101

Some non-standard applications do not encode the FNC1 at the starting message. When this is the case,
remove ~1 at the beginning of the input.

102 CHAPTER 10 BARCODE TECHNOLOGIES

10.13. DataBar Symbology Family
DataBar family formerly referred to as Reduced Space Symbology, or RSS, adopted its official new name GS1
DataBar on February 12, 2007. The GS1 board, formerly known as UCC/EAN organization, has declared that
“GS1 DataBar symbols and GS1 Application Identifiers shall be available in all trade item scanning systems
beginning Jan 1, 2010.”7

GS1 DataBar is really a family of bar code symbologies. Some are very small, intended for produce and
small consumer packages. And some are larger, intended to carry more data needed for identifying variable-
measure foods and the required content on coupons. Some can be read omnidirectionaly, which makes them
perfectly suitable for POS applications.

Table 10.5. GS1 DataBar Family

Variant Data Encoded POS Applications Sample Barcode

DataBar
Omnidirectional

14-digit GTIN Yes Packaged goods

DataBar Stacked
Omnidirectional

14-digit GTIN Yes Packaged goods,
Produce

DataBar
Expanded

Any GS1-128 data,
up to 74 digits or 41
alphanumeric

Yes Variable-measure
food, Coupons

DataBar
Expanded Stacked

Any GS1-128 data,
up to 74 digits or 41
alphanumeric

Yes Variable-measure
food, Coupons

DataBar Truncated 14-digit GTIN No Health care item

DataBar Stacked 14-digit GTIN No Health care item

DataBar Limited 14-digit GTIN No Health care item

7Dubbed as “GS1 DataBar Sunrise 2010.” For more information, see http://www.gs1.org/databar/.

http://www.gs1.org/databar/

CHAPTER 10 BARCODE TECHNOLOGIES 103

Among the seven variants, four, DataBar-14, DataBar Stacked Omni, DataBar Expanded and
DataBar Expanded Stacked were designed and specifically to work at retail POS because they can be
omnidirectionally read. The remaining three, DataBar Truncated, DataBar Stacked, and DataBar Limited, are
not recommended to work at retail POS and were design for very very small products (such as healthcare
items).

All DataBar symbologies except DataBar Expanded and DataBar Expanded Stacked require 13 digit or 14
digits as input (the GTIN number). The last check digit is not actually encoded into the barcode. Scanners are
required to calculate the check digit and transmit it together upon reading the barcode.

Note The GS1-128 application identifier for GTIN, 01, is required to transmit
back with 14-digit data. Therefore, a standard complaint scanner will transmit
0104412345678909 upon reading a DataBar barcode with GTIN number
04412345678909 encoded.

10.13.1. What is GTIN?
GTIN is the acronym for Global Trade Item Number, a 14-digit number that identifies trade items developed
by GS1 organization. This number have many names, such as SCC-14 (Serial Container Code), UCC-14.

GTIN can be derived from UPC-A or EAN-13 numbers. The first digit is package indicator. Digit '0' and '9'
have special meanings here - '0' often means that there is one item in the box, and '9' indicates a variable
measure item. The package indicator is followed by GS1 company prefix (assigned by GS1) and item number
(assigned by the company). They should be in total of 12 digits. This portion is the same as the first 12 digits
in an EAN-13 number, or '0' plus the first 11 digits in a UPC-A number. The last digit is checksum, which is
calculated based on Mod10 algorithm on previous 13 digits.

Because UPC-A and EAN-13 numbers can be thought as special cases of GTINs (the package indicator is '0'), a
14-digit GTIN unqiuely identifies any trade item (a single item or a container).

GTIN is often depicted using Interleaved 2 of 5 or GS1-128 symbologies. This is expected to change as GS1
is endorsing DataBar. The benefits of using DataBar is that it produces more compact barcodes, espcially
when comparing with UPC-A and EAN-13 symbols. Furthermore, DataBar Expanded allows additional
information to be encoded, such as serial number, weight or price.

10.13.2. Barcode Height
DataBar Truncated and DataBar Stacked symbols have their height fixed to its X-dimension. That is, you can
not change the height by modifying BarHeight property. They are always 13X.

In DataBar Stacked Omnidirectional and DataBar Expanded Stacked symbols, the overall size of the barcode
(excluding human readable text and other elements) is not the same as BarHeight, because multiple rows exist.

To achieve omnidirectional scannability and standard conformance, the following minimum height should be
observed for DataBar-14, DataBar Stacked Omnidirectional, and DataBar Expanded (X=NarrowBarWidth):

• DataBar: 33X
• DataBar Stacked Omni: 33X
• DataBar Limited: 10X
• DataBar Expanded: 34X
• DataBar Expanded Stacked: 34X

10.13.3. Human Readable Text

104 CHAPTER 10 BARCODE TECHNOLOGIES

The widths of stacked symbols (DataBar Stacked etc.) can be very small to hold the human readable
text in one line. When this happens, the human readable text will wrap into multiple lines. If this is not
desired, turn the human readable text off and set it to the comment. You can set comment margin properties
CommentMarginLeft and CommentMarginRight to adjust the with of comment block.

Normal (comment off, human readable on) human readable off, comment on,
CommentMarginLeft=200 mils

10.13.4. DataBar Expanded and DataBar Expanded Stacked
DataBar Expanded and DataBar Expanded Stacked usually encode a GTIN number plus additional
information, such as price, weight, expiration date and so on. Moreover, any GS1-128 data can be encoded in
DataBar Expanded and DataBar Expanded Stacked.
Although they are referred separately, DataBar Expanded Stacked is a superset of DataBar Expanded. Any
DataBar Expanded symbols are also DataBar Expanded Stacked symbols. Therefore, in our implementation
we use DataBar Expanded for both cases, you create DataBar Expanded Stacked symbols by setting symbols
per row value to a non-zero value.
Because the support for DataBar Expanded is added in version 3.4, and we did not want to add additonal
properties to break backward compatiblity, we choose an existing property, PDFMaxCols for this purpose.
By default, PDFMaxCols is set to zero, which creates a non-stacked DataBar Expanded barcode. To create a
DataBar Expanded Stacked barcode, set this property to an even number between 2 and 22. 8

10.13.4.1. Input Format
For all DataBar symbologies except DataBar Expanded and DataBar Expanded Stack, the input is required
to be a 13-digit GTIN number. You can also enter 14 digits, however, the last digit is ignored. Excessive input
will be truncated.
The input format for DataBar Expanded and DataBar Expanded Stacked is identical to the
one specified in Section 10.12, “UCC/EAN-128”. AIs must be enclosed in parentheses. Barcode
DLL will parse the data according to rules set by Application Identifiers. For example, input
(01)90012345678908(3103)012233(15)081231 is valid, which encodes the following information: GTIN
0012345678908, weight 12.233Kilogram, and production date Dec. 31, 2008.
In the input for DataBar Expanded, spaces can appear as part of input, and they are preserved in the human
readable text. However, spaces are not part of the data and are not encoded into the barcode.

8A DataBar Expanded symbol can hold 22 symbol characters. Setting PDFMaxCols to 22 or a large number effectively creates non-
stacked barcodes.

CHAPTER 10 BARCODE TECHNOLOGIES 105

10.14. Interleaved 2 of 5 (ITF25)
Interleaved 2 of 5 is a high-density numeric symbology. Some applications require a modulo 10 checksum
digit at the end of the message. Interleaved 2 of 5 uses an “interwinded” method to create barcodes and
consequently it requires the data length to be even. In order to meet this requirement, Barcode DLL appends a
MOD10 check digit when it finds that the input is in odd length. Otherwise, it encodes the data as is.
Note that this behavior has changed since version 3.4. Previously, check digit is added only when property
I2of5OptionalCheckDigit is TRUE, otherwise a '0' is appended instead. The new implement allows you to enter
13 digits SCC-14 number to get a complete barcode with the check digit.
If the check digit is added, it always appears in the human readable text.
The input for Interleaved 2 of 5 allow spaces. The spaces are preserved in the human readable text but not
encoded into the barcode. Fro example, the barcode below is created on input 0 07 70007 0723. Note that
the last digit '9' is the check digit, which is calculated by the program.
Interleaved 2 of 5 is widely used to encode Shipping Container Code (SCC-14), which contains exact 14 digits.
When it is used for encoding SCC-14 numbers, it is also called ITF-14.

You can add bear bars to the barcode by setting BearerBars to TRUE.

106 CHAPTER 10 BARCODE TECHNOLOGIES

10.15. POSTNET

POSTNET (Postal Numeric Encoding Technique) encodes a US numeric address code (also called Zip code)
which may contain 5, 9 or 11 digits - frequently referred as Zip, Zip+4 and Zip+6.
POSTNET is a height-modulated symbology which encodes the data in the height of the barcode instead of
the width. Barcode DLL produces POSTNET barcode based on USPS standard. The height of each bar and the
pitch between two adjacent bars are fixed and can not be modified - changing NarrowBarWidth and BarHeight
yields no effect. Although Barcode DLL produces human readable if you desire, keep in mind that USPS
standard does not allow human readable text under the barcode.
Barcode DLL accepts non-numeric input but filters them out at the time of the encoding. It adjusts the length
by adding trailing zeros to meet the length requirement. You may take the advantage by assigning the full
address line to the Message instead of passing only digits. For example, data input Monterey Park, CA
91755-1688 yields an identical barcode as message 917551688.

CHAPTER 10 BARCODE TECHNOLOGIES 107

10.16. PDF 417

Figure 10.1. Example PDF417 Barcode

PDF417 is a multi-row, variable-length symbology with high data capacity and error-correction capability.
PDF417 offers some unique features which make it the widely used 2D symbology. A PDF417 symbol can
be read by linear scanners, laser scanners or two-dimensional scanners. PDF417 is capable of encoding more
than 1100 bytes, 1800 text characters or 2710 digits. Large data files can be encoded into a series of linked
PDF417 symbols using a standard methodology referred to as Macro PDF417.

The data is encoded using one of three compaction modes: Text compaction mode, which encodes alpha-
numeric characters and punctuations; Binary compaction mode, which encodes all 8-bit characters; Numeric
compaction mode, which achieves the highest density by only allowing digits. The default mode is Text
compaction mode. Using special code words, the compaction mode can be switched from one to another.
Barcode DLL automatically selects the compaction mode based on data encoded and shifts accordingly.

Each PDF417 symbol contains 2 to 512 error correction code words corresponding to error correction level 0
(the least) to 8 (the highest).

10.16.1. Security Level
In PDF417 the security level is selectable. You can specify a value between 0 and 9 for PDF417SecurityLevel.
Value 9 means automatic and the program selects the security level based on the data encoded and the
recommendation from the PDF417 specification.

10.16.2. Size Control
There are several properties determining the size and the shape of the symbol. PDFMaxRows sets the
maximum number of rows allowable and PDFMaxCols sets the maximum number of columns. A PDF417
symbol can have 30 columns and 60 rows. It should be pointed out that the row and column here really
mean code words, instead of modules. The width of the representation of a code word is much longer than its
height. Value 0 allows Barcode DLL to select the value based on the amount of the data and the aspect ratio.

The data capacity is directly linked to the number of columns and rows. Setting PDFMaxRows and
PDFMaxcols to small values results smaller data capacity. When the program is unable to encode the data
within the limits, an error is reported.

Other related properties include PDFModuleHeigth, PDFModuleWidth and PDFAspectRatio. The smallest
unit in a PDF417 symbol is called a module. The PDDFModuleWidth and PDFModuleHeight reflect the height
and width of the module respectively.

PDFAspectRatio impacts the shape of the final symbol. The PDFAspectRatio is defined as the ratio of the height
to the overall width of the symbol. Barcode DLL locates the solution that close matches the specified value.
Note: in many cases to match the aspect ratio Barcode DLL has to increase the overall symbol size. Smaller
PDFAspectRatio value usually produces more compact symbols.

108 CHAPTER 10 BARCODE TECHNOLOGIES

PDFAspectRatio=0.5 (default) PDFAspectRatio=0.2 PDFAspectRatio=1.0

10.16.3. Input Format
PDF417 is capable of encoding all characters with ASCII values between 0 and 255. Depending on
programming environment you may need tilde codes to escape some characters.
When creating PDF417 barcodes you can use the following tilde codes:

~dnnn
When nnn corresponds to a numeric value between 0 and 255, the tilde code sequence represents a
character with value equal to nnn. For example, ~d032 represents a space character.

~~
Represents a tilde (~) character.

~2
Indicates that a MacroPDF417 control block follows. The ~2 tilde codes format is a Morovia extension.

~3
Indicates the start of a GLI block. This escape sequence must be followed by exact 6 digits, which
corresponds to the GLI value.

~X
Represents a character value from 0 to 26. Replace the X like in the following example ~@ means character
ascii 0, ~A means character 1, ~B means character 2, ~C means character 3 ...

10.16.4. Truncated PDF
In a relatively clean environment where label damage is not likely, the right column indicators can be omitted
and the stop pattern can be reduced to one module bar. This truncation reduces the data overhead and saves
some space at the cost of performance and robustness.

Figure 10.2. Truncated PDF417 Barcode

To produce truncated PDF417 symbols, set the property PDF417TruncatedSymbol to TRUE.

10.16.5. Global Label Identification (GLI)
GLI was introduced to allow output data stream to have interpretations different from the default character
set (ISO8859-1). Since version 3.2, Barcode DLL has been capable of encoding GLI values. A GLI can be any
number between 0 and 999999. The tilde code sequence ~7nnnnnn is used to enter the ECI value. The tilde
code sequence can appear at any places of the input, provided that exact 6 digits follows ~7. For example to
start an interpretation 10, enter ~7000010.

CHAPTER 10 BARCODE TECHNOLOGIES 109

10.16.6. Macro PDF417
Using Macro PDF417, large amount data are splitted into several file segments and encoded into individual
symbols. To create Macro PDF417 symbols, you need to enter the control block information using ~2 tilde
code sequence. A sample input looks like this:
12345678901234567890~2[3][LA-CONFIDENTIAL][6][fn:part2|ts:199044|ad:Justin Power|fs:110990]

Syntax
The tilde code sequence for Macro PDF417 control block information is as follows:
~2[SI][FID][TS][fn:string|...]

The ~2 must appear at the end of the message. The data after the control block is ignored. The first three fields
are required. The last field is optional and can contain several additional sub-fields.

Segment Index (SI)
In Macro PDF417, each symbol represents a segment of the whole file. To rebuild the whole file, the segment
must be constructed in proper order. The value of segment index is 0 based. For example, for a file divided
into k segments, the segment index can be any number between 0 and k-1.
The value allowed for SI is between 0 and 99.

File ID (FID)
All symbols belong to the same group have the same file ID. The File ID can be any string, such as archive2.
Although the standard does not set a limit on the length of the File ID, keep in mind that the control block
reduces the overall symbol capacity.

Total Segments (TS)
The “total segments” field is required for every symbol in the group. It should remain constant among all
symbols.

Optional Fields
Macro PDF417 defines several optional fields to encode additional file information such as file name,
timestamp, file size and checksum. All these fields must be at the end of the control block. If more than two
optional fields are present, they should be separated with vertical bars |. Within a field, a colon : divides the
name part and value part.
The acceptable field names are listed below:

Table 10.6. Optional Fields in Macro PDF417

Field Designator Field Name
(abbreviated)

Field Name (normal) Comment Data Type

0 fn filename File Name string

1 sc segmentcount Segment Count number

2 ts timestamp Time Stamp number

3 sd sender Sender string

4 ad addressee Addressee string

5 fs filesize File Size number

6 cs checksum Checksum number

110 CHAPTER 10 BARCODE TECHNOLOGIES

For example, [fn:archive1.zip|ts:20051231|sd:user@example.com|cs:9901234] encodes 4 optional
fields: file name (archive1.zip), time stamp (20051231), sender (user@example.com) and checksum
(9901234).

CHAPTER 10 BARCODE TECHNOLOGIES 111

10.17. Data Matrix

Figure 10.3. Example Data Matrix Barcode

Data Matrix is high density two dimensional symbology capable of encoding up to 2,000 characters of data.
It used to have a group of error correction schemes from ECC00 to ECC140; now the standard mandates
ECC200 to be used. Barcode DLL creates ECC200 Data Matrix barcodes.

10.17.1. Enhanced Feature Support
In version 3.2, several optional features are added to Barcode DLL:

• Extended Channel Interpretations. This optional feature enables characters from other character sets
(e.g. Arabic, Cyrillic and Greek) and other data interpretations or industry-specific requirements to be
represented. This feature requires reader support.

• FNC1 character. The FNC1 character, when appearing at the start of the symbol, indicates the data
contains a specific industry format authorized by AIM. It can also appear in other positions acting as a
field separator.

• Macro Character 05 and 06. Data matrix provides a means of abbreviating an industry specific header
and trailer in one symbol character.

• Reader Programming. A reader programming character indicates that the symbol encodes a message
used to program the reader system. Requires reader support.

• Structural Append. The Structural Append feature enables encoding large amount of data using
multiple symbols. Requires reader support.

10.17.2. Size Control
Data Matrix defines 30 different sizes. Most sizes are square, and a couple of them are rectangle. Regardless
the final shape, the “real estate” unit, called module, is always square.
The size id, number of row and columns as well as the data capacity are listed in the table below.

Table 10.7. Data Matrix Symbol Sizes

Size ID Symbol Size Data Capacity

Enum Value Row Column Numeric Alpha-
numeric

Binary

mbxDMTargetSize_10X10 30 10 10 6 3 1

mbxDMTargetSize_12X12 1 12 12 10 6 3

mbxDMTargetSize_14X14 2 14 14 16 10 6

mbxDMTargetSize_16X16 3 16 16 24 16 10

mbxDMTargetSize_18X18 4 18 18 36 25 16

mbxDMTargetSize_20X20 5 20 20 44 31 20

112 CHAPTER 10 BARCODE TECHNOLOGIES

Size ID Symbol Size Data Capacity

Enum Value Row Column Numeric Alpha-
numeric

Binary

mbxDMTargetSize_22X22 6 22 22 60 43 28

mbxDMTargetSize_24X24 7 24 24 72 52 34

mbxDMTargetSize_26X26 8 26 26 88 64 42

mbxDMTargetSize_32X32 9 32 32 124 91 60

mbxDMTargetSize_36X36 10 36 36 172 127 84

mbxDMTargetSize_40X40 11 40 40 228 169 112

mbxDMTargetSize_44X44 12 44 44 288 214 142

mbxDMTargetSize_48X48 13 48 48 348 259 172

mbxDMTargetSize_52X52 14 52 52 408 304 202

mbxDMTargetSize_64X64 15 64 64 560 418 278

mbxDMTargetSize_72X72 16 72 72 736 550 366

mbxDMTargetSize_80X80 17 80 80 912 682 454

mbxDMTargetSize_88X88 18 88 88 1152 862 574

mbxDMTargetSize_96X96 19 96 96 1392 1042 694

mbxDMTargetSize_104X104 20 104 104 1632 1222 814

mbxDMTargetSize_120X120 21 120 120 2100 1573 1048

mbxDMTargetSize_132X132 22 132 132 2608 1954 1302

mbxDMTargetSize_144X144 23 144 144 3116 2335 1556

mbxDMTargetSize_8X18 24 8 18 10 6 3

mbxDMTargetSize_8X32 25 8 32 20 13 8

mbxDMTargetSize_12X26 26 12 26 32 22 14

mbxDMTargetSize_12X36 27 12 36 44 31 20

mbxDMTargetSize_16X36 28 16 36 64 46 30

mbxDMTargetSize_16X48 29 16 48 98 72 47

 In Barcode DLL you use DataMatrixTargetSizeID property to set the size you desire. If the property is set to
0, Barcode DLL picks up the size that fits the data encoded.
Previous to version 3.2, when DataMatrixTargetSizeID is too small to encode the whole data, Barcode DLL
automatically increases the overall size. This behavior has changed in version 3.2. Now the progrom reports
an error instead.
If DataMatrixTargetSizeID is more than holding the data, extra padding characters are added to the barcode.
It is sometimes desirable if you want to have all the symbols created have the same size at the same time the
data encoded vary from symbol to symbol.

10.17.3. Module Size
The property DataMatrixModuleSize determines both the width and height of the smallest unit - a module. By
default it is 20 mils. Same as all other length properties, the real value depends on Measurement.

CHAPTER 10 BARCODE TECHNOLOGIES 113

10.17.4. Input Format
Data Matrix is capable of encoding all characters in a single-byte character set, plus some symbol-specific
characters. Depending on the programming environment you may need tilde codes to escape some
characters. When creating data matrix barcodes, you can use the following tilde codes:
~dnnn

When nnn corresponds to a numeric value between 0 and 255, the tilde code sequence represents a
character with value equal to nnn. For example, ~d032 represents a space character.

~~
Represents a tilde (~) character.

~1
Represents a FNC1 character. The tilde escape sequence can appear anywhere in the input.

~2
Indicates that a structural append control block follows. The ~2 tilde codes format is a Morovia extension.

~3
Represents a symbol character which means that message followed is used for reader programming. This
escape sequence must appear at the beginning of the input.

~5
Represents a symbol character which encodes Macro 5 abbreviation. Must appear at the beginning of the
message.

~6
Represents a symbol character which encodes Macro 6 abbreviation. Must appear at the beginning of the
input.

~7
Indicates the start of an ECI block. This escape sequence must be followed by exact 6 digits, which
corresponds to the ECI value.

~X
Represents a character value from 0 to 26. Replace the X like in the following example ~@ means character
ascii 0, ~A means character 1, ~B means character 2, ~C means character 3 ...

10.17.5. Macro 5 and 6
Data Matrix provides a way of abbreviating two industry specific header and trailer in one symbol character.
This feature exists to reduce the overall symbol size. They must appear at the beginning of the input. You can
use ~5 and ~6 to escape them respectively.

Table 10.8. Macro 5 and 6

Tilde Sequence Name Interpretation

 header trailer

~5 05 Macro [)>[RS]05[GS] [RS][EOT]

~6 06 Macro [)>[RS]06[GS] [RS][EOT]

10.17.6. Extended Channel Interpretation (ECI)
ECI was introduced to allow output data stream to have different interpretations different from the default
character set (ISO8859-1). Since version 3.2, Barcode DLL has been capable of encoding ECI values.

114 CHAPTER 10 BARCODE TECHNOLOGIES

An ECI can be any number between 0 and 999999. The tilde code ~7nnnnnn is used to enter the ECI value.
The tilde code sequence can appear at any places of the input, but there must be exact 6 digits following ~7.
For example to start an interpretation of 10, enter ~7000010.

10.17.7. Structural Append (SA)
The structural append feature allows up to 16 symbols in a structure. A capable reader can either buffer the
contents of each symbol until all symbols are read.
To encode structural append, you must supply there items for each symbol:

• Symbol Sequence Indicator (SI). The sequence indicator is 1-based index which identify the position of
this particular symbol in the group. Can be any number between 1 and 16.

• Total number of symbols (TS). This value indicates the number of total symbols. Can be any number
between 1 and 16. The value should be consistent among all symbols in the group.

• File Identification Number(FID). Identify the symbol group. This number must remain the same among
all the symbols in the group.

The tilde code sequence is expressed in the following format:
~2[SI][FID][TS]

For example, tilde code sequence ~1[1][126][6] indicates that the current symbol belongs to a group with
file identification number as 126, and there are 6 symbols in total in this group.
The ~2 tilde code sequence must appear at the end of the input. All three fields are required and must be
enclosed with square brackets ([and]) and must follow the tilde code ~2.

File ID (FID)
The File ID is a number remaining the constant among all symbols in a group. It uniquely identifies the
symbol group. The value for this field should be between 1 and 64516.

Sequence Indicator (SI)
Sequence Indicator is the 1-based index number of the current symbol. In a group with total 10 symbols, the
first symbol has the SI of 1 and the last has the SI of 10.

Total Number of Symbols
The Total Number of symbols indicates how many symbols in the group.

CHAPTER 10 BARCODE TECHNOLOGIES 115

10.18. MaxiCode
MaxiCode is a fixed-size (1.11inch x 1.054 inch nominal) two-dimensional symbology made up offset rows of
hexagonal elements around a unique circular finder pattern. A MaxiCode symbol has 884 hexagonal modules
arranged in 33 rows with each row containing up to 30 modules. The maximum data capacity for MaxiCode
is 93 characters. The unique design enables the symbol quickly picked up by the scanners.

Figure 10.4. Example MaxiCode Barcode

MaxiCode is used by United Parcel Service (UPS) for package tracking.
MaxiCode defines 6 modes that determines that how data should be interpreted. The mode 0 and 1 are
no longer used. Mode 4 and 5 are used to encode "raw data" with mode 5 offers a slight higher data error
correction. Mode 2 and 3 are used to encode “structure message” which comprises two parts: Primary
Message and Secondary Message. The Primary Message encodes a postal code, 3-digit country code and 3-
digit class of service code. The Second Message encodes other data.

Table 10.9. MaxiCode Modes

Mode Description

mode 2 Structured Carrier Message - Numeric Postal Code (up to 9 digits)

mode 3 Structured Carrier Message - Alphanumeric Postal Code(up to 6 characters)

mode 4 Raw Data, Standard Error Correction

mode 5 Raw Data, Enhanced Error Correction

mode 6 Reader Programming Mode

10.18.1. Barcode DLL implementation
Barcode DLL implements the MaxiCode based on ISO/IEC 16023. This ISO standard defines three standard
fields in the primary message portion. the standard does not define the data structure for the secondary
message. UPS adds many fields in the secondary message portion; and because the limit of data capacity, UPS
uses a compression algorithm to put the whole fields into the secondary message. Barcode DLL encodes the
secondary message as is. To produce a UPS compliant symbol, you need to consult UPS documentation for
those additional fields and the compression algorithm.
When the symbol is encoded under mode 2 and 3, MaxiCode properties such as MaxicodeClass,
MaxicodeCountryCode, MaxicodeZipcode are used unless the message starts with a UPS carrier prefix (see
below). When the symbol is encoded under other modes, these properties are not placed into the symbol.
The MaxiCode requires the printing equipment having at least 200 dpi in resolution. Rasterizing images with
a lower resolution will not produce a quality barcode.

10.18.2. Message Structure

116 CHAPTER 10 BARCODE TECHNOLOGIES

If the message start with the standard carrier prefix ([)>[RS][GS]01[GS]YY), the related properties
(MaxiCodeClass, MaxicodeCountryCode and MaxicodeZipCode) will be ignored during the encoding process.
The primary and secondary messages are retrieved as follows: The first nine data characters [)>[RS]
[GS]01[GS]YY are extracted to be encoded in the secondary message. The next three data elements,
representing the postal code, country code and service class code respectively are extracted from the source
data. The remaining string of data is then encoded in the secondary message after the header [)>[RS]
[GS]01[GS]YY (excluding three RS characters which separate the three data elements). For example, the
message above will be broken into the Primary Message and Secondary Message like this:

• Primary Message:
Postal Code - 152382802
Country Code - 802
Class of service Code - 001

• Secondary Message:
[)>[RS][GS]01[GS]961Z00004951[GS]
UPSN[GS]06X610[GS]158[GS]1234567[GS]1/1
[GS]Y[GS]634 ALPHA DRIVE[GS]PITTSBURGH
[GS]PA[GS][EOT]

10.18.3. Input Format
When creating Maxicode symbols, you can use the following tilde codes:

Table 10.10. Tilde Codes (MaxiCode)

tilde code description

~dnn When nnn corresponds to a numeric value between 0 and 255, the tilde code sequence
represents a character with value equal to nnn. For example, ~d032 represents a space
character.

~~ Represents a tilde (~) character.

~2 Indicates that a structural append control block follows. See the Structure Append section
for more details.

~7 Indicates the start of an ECI block. This escape sequence must be followed by exact 6
digits, which corresponds to the ECI value.

~X Indicates the start of an ECI block. This escape sequence must be followed by exact 6
digits, which corresponds to the ECI value.

CHAPTER 10 BARCODE TECHNOLOGIES 117

Note In version 3.2, the special character format (a back slash followed by 3 digit
ASCII value) is no longer supported.

10.18.4. Extended Channel Interpretation (ECI)
ECI was introduced to allow output data stream to have different interpretations different from the default
character set (ISO8859-1). Started from version 3.2, Barcode DLL is capable of encoding ECI values.
An ECI can be any number between 0 and 999999. The tilde code ~7nnnnnn is used to enter the ECI value.
The tilde code sequence can appear at any places of the input, but there must be exact 6 digits following ~7.
For example to start an interpretation 10, enter ~7000010.

10.18.5. Structural Append (SA)
The structural append feature allows up to 8 symbols in a structure. A capable reader can either buffer the
contents of each symbol until all symbols are read.
To encode structural append, you must supply there items for each symbol:

• Symbol Sequence Indicator (SI). The sequence indicator is 1-based index which identify the position of
this particular symbol in the group. Can be any number between 1 and 8.

• Total number of symbols (TS). This value indicates the number of total symbols. Can be any number
between 1 and 8. The value should be consistent among all symbols in the group.

The tilde code sequence is expressed in the following format:
~2[SI][TS]

For example, tilde code sequence ~1[1][6] indicates that the current symbol is the first symbol in a group
with 6 symbols in total.
The ~2 tilde code sequence must appear at the end of the input. All three fields are required. They must be
enclosed within a pair of square brackets [] and must follow the tilde code sequence ~2.

Chapter 11. Technical Support
Morovia offers a wide variety of support services. To help you save time and money when you encounter a
problem, we suggest to try to resolve the problem by following the options below in the order shown.

• Consult the documentation. The quickest answer to many questions can be found in the Morovia
product documentation.

• Review the tutorial and sample applications. The tutorial steps you through the development process
for a typical barcode application. The sample applications provide working code examples in several
programming languages. All sample applications are extensively commented.

• Access Morovia Online. Morovia Online provides a knowledge base which documents the frequently
asked questions and a web forum.
The web address for knowledge base is http://support.morovia.com. And you can ask question at
support forum at http://forum.morovia.com.

• Contact Morovia Technical Support Services. The Technical Support service is provided for free up to
180 days after the purchase. Email Morovia support engineers at support@morovia.com.

Note If you purchased your software from our reseller, check to see if they provide
support services before contacting Morovia.

Support services and policies are subject to change without notice.

http://support.morovia.com
http://forum.morovia.com

Appendix A. Component Software License
Agreement
End-User License Agreement IMPORTANT-READ CAREFULLY: This End User License Agreement (this
"EULA") contains the terms and conditions regarding your use of the SOFTWARE (as defined below). This
EULA contains material limitations to your rights in that regard. You should read this EULA carefully and
treat it as valuable property.

This EULA
1. Software Covered by this EULA. This EULA governs your use of the Morovia Corporation

("MOROVIA") component software product(s) enclosed or otherwise accompanied herewith
(individually and collectively, the "SOFTWARE"). The term "SOFTWARE" includes, to the extent
provided by MOROVIA: 1) any revisions, updates and/or upgrades thereto; 2) any data, image or
executable files, databases, data engines, computer software, or similar items customarily used or
distributed with computer software products; 3) anything in any form whatsoever intended to be used
with or in conjunction with the SOFTWARE; and 4) any associated media, documentation (including
physical, electronic and on-line) and printed materials (the "Documentation").

2. This EULA is a Legally Binding Agreement between You and MOROVIA. If you are acting as an agent
of a company or another legal person, such as an officer or other employee acting for your employer,
then "you" and "your" mean your principal, the entity or other legal person for whom you are acting.
However, importantly, even if you are acting as an agent for another, you may still be personally liable
for violation of copyright laws.

YOUR LICENSE TO DEVELOP AND TO DISTRIBUTE
As provided in more detail below, this EULA grants you two licenses: 1) a license to use the SOFTWARE to
develop other software products (the "Development License"); and 2) a license to use and/or distribute the
Developed Software (the "Distribution License"). Both of these licenses (individually and collectively, the
"Licenses") are explained and defined in more detail below.

1. Definitions. The following terms have the respective meanings as used in this EULA:
"Network Server" means a computer with one or more computer central processing units (CPU's) that
operates for the purpose of serving other computers logically or physically connected to it, including,
but not limited to, other computers connected to it on an internal network, intranet or the Internet.
"Web Server" means a type of Network Server that serves other computers more particularly connected
to it over an intranet or the Internet.
"Developed Software" means those computer software products that are developed by or through
the use of the SOFTWARE. "Developed Web Server Software" means those Developed Software
products that reside logically or physically on at least one Web Server and are operated (meaning the
computer software instruction set is carried out) by the Web Server's central processing unit(s) (CPU).
"Developed Legacy Software" means those Developed Software products that are not Developed Web
Server Software, including, for example, stand-alone applications and applications accessed by a file
server only. "Redistributable Files" means the SOFTWARE files or other portions of the SOFTWARE
that are provided by MOROVIA and are identified as such in the Documentation for distribution by
you with the Developed Software. "Developer" means a human being or any other automated device
using the SOFTWARE in accordance with the terms and conditions of this EULA.
"Developer Seat License" means that each Developer using or otherwise accessing the programmatic
interface or the SOFTWARE must obtain the right to do so by purchasing a separate End User License.

122 APPENDIX A COMPONENT SOFTWARE LICENSE
AGREEMENT

"Network Server CPU License" means that a separate End User License must be purchased for each
CPU operating the computer software at issue in the reference.

"Source Code" shall mean computer software code or programs in human readable format, such as a
printed listing of such a program written in a high-level computer language. The term "Source Code"
includes, but is not limited to, documents and materials in support of the development effort of the
SOFTWARE, such as flow charts, pseudo code and program notes.

2. Your Single User License. You are hereby granted a limited royalty-free, non-exclusive right to use the
SOFTWARE on ONE CPU by ONE INDIVIDUAL. The purpose of using SOFTWARE is to produce the
results, in digital or printable form, and not to develop custom application. A Single User License does
not apply to the Network Server.

3. Your Network Server License. You are hereby granted a limited royalty-free, non-exclusive right to
use the SOFT on ONE CPU on a Network Server. The number of Network Server allow 1 CPU and 200
concurrent client accesses. Additional licenses need to be purchased if the usage exceed 1 CPU or 200
concurrent clients. If the Software is not used on a Network Server, the license option for Single User
applies.

4. Your Developer License. You are hereby granted a limited, royalty-free, right to use the SOFTWARE
to design, develop, and test Developed Software, on the express condition that, and only for so long
as, you fully comply with all terms and conditions of this EULA. You are also allowed to distribute the
software inside or outside your organization for up to 10,000 copies. When you distribute the software,
you adhere to the following terms: (a)You may not resell, rent, lease or distribute the Software alone.
The Software must be distributed as a component of an application and bundled with an application
or with the application's installation files. The Software may only be used as part of, and in connection
with, the bundled application. (b)You may not resell, rent, lease or distribute Software in any way that
would compete with Morovia Corporation. (c)you must include the following MOROVIA copyright
notice in your Developed Software documentation and/or in the "About Box" of your Developed
Software, and wherever the copyright/rights notice is located in the Developed Software ("Portions
Copyright (c) Morovia Corporation 2004. All Rights Reserved."). (d) agree to indemnify, hold harmless,
and defend MOROVIA, its suppliers and resellers, from and against any claims or lawsuits, including
attorney's fees that may arise from the use or distribution of your Developed Software. (e) you may use
the SOFTWARE only to create Developed Software that is significantly different than the SOFTWARE.

5. Your 5-Developer License. You are hereby granted the rights of the Developer License for up to 5
developers and 20,000 distribution.

6. Your Unlimited Developer License. With license you can install the component software for an
unlimited number of developers within your organization and allow unlimited distribution.

7. Serial Number. Within the packaging of the SOFTWARE, a unique serial number (the "Serial Number")
is included, which allows for the registration of the SOFTWARE. The Serial Number is subject to the
restrictions set forth in this EULA and may not be disclosed or distributed either with your Developed
Software or in any other way. The disclosure or distribution of the Serial Number shall constitute a
breach of this EULA, the effect of which shall be the automatic termination and revocation of all the
rights granted herein.

8. Evaluation Copy. If you are using an "evaluation copy" or similar version, specifically designated
as such by MOROVIA on its website or otherwise, then the Licenses are limited as follows: a) you
are granted a license to use the SOFTWARE for a period of thirty (30) days counted from the day
of installation (the "Evaluation Period"); b) upon completion of the Evaluation Period, you shall
either i) delete the SOFTWARE from the computer containing the installation, or you may ii) contact
MOROVIA or one of its authorized dealers to purchase a license of the SOFTWARE, which is subject to
the terms and limitations contained herein; and c) any Developed Software may not be distributed or
used for any commercial purpose.

APPENDIX A COMPONENT SOFTWARE LICENSE
AGREEMENT 123

INTELLECTUAL PROPERTY
1. Copyright. You agree that all right, title, and interest in and to the SOFTWARE (including, but not

limited to, any images, photographs, animations, video, audio, music, text, and "applets" incorporated
into the SOFTWARE), and any copies of the SOFTWARE, and any copyrights and other intellectual
properties therein or related thereto are owned exclusively by MOROVIA, except to the limited extent
that MOROVIA may be the rightful license holder of certain third-party technologies incorporated into
the SOFTWARE. The SOFTWARE is protected by copyright laws and international treaty provisions.
The SOFTWARE is licensed to you, not sold to you. MOROVIA reserves all rights not otherwise
expressly and specifically granted to you in this EULA.

2. Backups. You may either: (a) copy the SOFTWARE solely for backup or archival purposes; or (b) install
the SOFTWARE on a single computer, provided you keep the original solely for backup or archival
purposes. Notwithstanding the foregoing, you may not copy the Documentation.

3. General Limitations. You may not reverse engineer, decompile, or disassemble the SOFTWARE,
except and only to the extent that applicable law expressly permits such activity notwithstanding this
limitation.

4. Software Transfers. You may not rent or lease the SOFTWARE. You may transfer the SOFTWARE
to another computer, provided that it is completely removed from the computer from which it was
transferred. You may permanently transfer all of your rights under the EULA, provided that you retain
no copies, that you transfer all the SOFTWARE (including all component parts, the media and printed
materials, any dates, upgrades, this EULA and, if applicable, the Certificate of Authenticity), and that
the recipient agrees to the terms and conditions of this EULA as provided herein. If the SOFTWARE is
an update or upgrade, any transfer must include all prior versions of the SOFTWARE.

5. Termination. Without prejudice to any other rights it may have, MOROVIA may terminate this EULA
and the Licenses if you fail to comply with the terms and conditions contained herein. In such an
event, you must destroy all copies of the SOFTWARE and all of its component parts.

WARRANTIES AND REMEDIES
The Software components provided by MOROVIA are licensed to you as is and without warranties as to
performance of merchantability, fitness for a particular purpose or any other warranties whether expressed
or implied. You, your organization and all users of the font, assume all risks when using it. Morovia shall not
be liable for any consequential, incidental, or special damages arising out of the use of or inability to use the
font or the provision of or failure to provide support services, even if we have been advised of the possibility
of such damages. In any case, the entire liability under any provision of this agreement shall be limited to the
greater of the amount actually paid by you or US $5.00.

MISCELLANEOUS
1. This is the Entire Agreement. This EULA (including any addendum or amendment to this EULA

included with the SOFTWARE) is the final, complete and exclusive statement of the entire agreement
between you and MOROVIA relating to the SOFTWARE. This EULA supersedes any prior and
contemporaneous proposals, purchase orders, advertisements, and all other communications in
relation to the subject matter of this EULA, whether oral or written. No terms or conditions, other than
those contained in this EULA, and no other understanding or agreement which in any way modifies
these terms and conditions, shall be binding upon the parties unless entered into in writing executed
between the parties, or by other non-oral manner of agreement whereby the parties objectively and
definitively act in a manner to be bound (such as by continuing with an installation of the SOFTWARE,
"clicking-through" a questionnaire, etc.) Employees, agents and other representatives of MOROVIA are
not permitted to orally modify this EULA.

124 APPENDIX A COMPONENT SOFTWARE LICENSE
AGREEMENT

2. You Indemnify MOROVIA. You agree to indemnify, hold harmless, and defend MOROVIA and its
suppliers and resellers from and against any and all claims or lawsuits, including attorney's fees, that
arise or result from this EULA.

3. Interpretation of this EULA. If for any reason a court of competent jurisdiction finds any provision of
this EULA, or any portion thereof, to be unenforceable, that provision of this EULA will be enforced
to the maximum extent permissible so as to effect the intent of the parties, and the remainder of this
EULA will continue in full force and effect. Formatives of defined terms shall have the same meaning
of the defined term. Failure by either party to enforce any provision of this EULA will not be deemed a
waiver of future enforcement of that or any other provision.

Glossary
AIM Abbreviation for AIM International, a world-wide trade organization for

manufacturers and providers of bar code products, services and supplies.

ASCII The character set and code described in American National Standard Code
for Information Interchange, ANSI X3.4-1977. Each ASCII character is
encoded with seven bits.

Aspect ratio The ratio of bar height to the overall length of the barcode.

BMP BMP is a raster graphics format developed by Microsoft. BMP is the
native grahpics format for Windows users. A BMP image data can be
uncompressed, or compressed using RLE scheme. The file size is generally
much bigger than other types since the compression scheme is not very
effective.

Check character Synonymous to “Check digit”.

Check digit A character whose value is calculated based on certain algorithm and used
for the purpose of performing a mathematical check to ensure the accuracy
of the data. In many symbologies this character has a numeric value hence
the name.

Code 39 Code 39 (also known as USS Code 39, Code 3 of 9) is the first alpha-numeric
symbology developed to be used in non-retail environment. It is widely
used to code alphanumeric information, such as the model number etc. It is
designed to encode 26 upper case letters, 10 digits and 7 special characters.

Code 93 Code 93 is a discrete, variable length, self-checking symbology. It is derived
from Code 39 with major enhancements. Code93 encodes all 127 ASCII
characters and does not require special scanner configuration.

Data matrix Data matrix is a space-efficient two-dimensional bar code symbology that is
made up of square modules. A data matrix symbol is capable of encoding up
to 2335 alphanumeric characters, or 1556 characters of 8-bit byte data, or 3116
digits of numeric data.

EAN-13 EAN is designed by the International Article Numbering Association (EAN)
in Europe. It is an extension to UPC-A to include the country information.
EAN-13 encodes 12 digits of numeric data along with a trailing check digit,
for a total of 13 digits of barcode data.

EAN-8 EAN-8 is the short version of EAN-13, the same as UPC-E vs. UPC-A. An
EAN-8 number contains 7 digits of message plus 1 check digit. Different
from UPC-E, an EAN-8 number is allocated separately and can not be
derived from an EAN-13 number.

EMF Acronym for Enhanced MetaFile. A newer 32-bit version of Windows
MetaFile. EMF contains frame information and contain more drawing
commands then its predecessor, WMF.

126 GLOSSARY

Extended character A character other than a 7-bit ASCII character. An extended character is a 1-
byte code point with the eighth bit set (ordinal 128 through 255).

GIF Acronym for Graphics Interchange Format. GIF is a bitmap image format
encoding up to 256 distinct color in a 24-bit RGB color space. GIF employs
LZW data compression, which does not lose image data during the
compression process.

GS1 Organization that oversees the allocation of U.P.C. and EAN numbers.
Formerly known as Uniform Code Council (UCC).

GS1 DataBar A family of bar code symbols, including GS1 DataBar-14, GS1 DataBar
Limited, GS1 DataBar Expanded, and GS1 DataBar-14 Stacked. Any member
of the GS1 DataBar family can be printed as a stand-alone linear symbol or
as a composite symbol with an accompanying 2D Composite Component
printed directly above the GS1 DataBar linear component. Formerly known
as Reduced Space Symbology (RSS).

GS1 DataBar Expanded A bar code symbol that encodes an GTIN-14 Identification Number plus
supplementary AI Element Strings, such as weight and “best before”
date, in a linear symbol that can be scanned omnidirectionally by suitably
programmed Point-of-Sale scanners.

GS1 DataBar Expanded
Stacked

A bar code symbol that is a variation of the GS1 DataBar Expanded Bar Code
Symbol that is stacked in multiple rows and is used when the normal symbol
would be too wide for the application.

GS1 DataBar Limited A bar code symbol that encodes an GTIN-14 Identification Number with
Indicators of zero or one in a linear symbol; for use on small items that will
not be scanned at the Point-of-Sale.

GS1 DataBar Truncated A truncated version of GS1 DataBar-14. The height is 10X. Used for small
packaging and not fit for Point-of-Sale scanners.

GS1 DataBar Stacked A bar code symbol that is a variation of the GS1 DataBar-14 Symbology that
is stacked in two rows and is used when the normal symbol would be too
wide for the application. It comes in two versions: a truncated version used
for small item marking applications and a taller omni-directional version that
is designed to be read by omni-directional scanners. GS1 DataBar Expanded
can also be printed in multiple rows as a stacked symbol.

GTIN Acronym for Global Trade Item Number. A 14-digit number that uniquely
identifies a trade item.

HIBC Acronym for Health Industry Bar Code. A bar code format based on code 3
of 9 adopted by health industry.

JPEG JPEG stands for Joint Photographic Experts Group. It is commonly referred
as an image format.

Macro PDF417 A method to link multiple PDF417 symbols together in order to encode large
amount of data.

 GLOSSARY 127

MaxiCode MaxiCode is a two-dimensional code, created by UPS for high-speed
sortation and tracking of unit loads and transport packages. It is ideal to
encode small amount of data since its capacity is fairly limited. On the other
side, its fixed size and unique “bull eye”design allow the symbol being
picked up very quickly.

Module In linear symbology, a module refers to the width of the narrowest bars. In
two dimensional symbology, a module refers to the cell smallest in size.

PDF417 PDF417 is a multi-row, variable-length symbology with high data capacity
and error-correction capability. PDF417 has some unique features which
makes it the widely used 2D symbology. A PDF417 symbol can be read
by linear scanners, laser scanners or two-dimensional scanners. PDF417 is
capable of encoding more than 1100 bytes, 1800 text characters or 2710 digits.
Large data files can be encoded into a series of linked PDF417 symbols using
a standard methodology referred to as Macro PDF417.

PNG Acronym for Portable Network Graphics. PNG is a bitmap image format that
employs lossless data compression.

POSTNET POSTNET (Postal Numeric Encoding Technique) encodes a US numeric
address code (also called Zip code) which may contain 5, 9 or 11 digits - often
called Zip, Zip+4 and Zip+6.

Quiet zones A clear space, containing no machine readable marks, which surrounds the
barcode. Sometimes called the "clear area".

Start/Stop character A special bar/space pattern that provides the scanner with start and stop
reading instructions as well as scanning direction indicator. Most linear
symbologies require start/stop characters included in the barcode.

TIF Acronym for Tagged Image File Format. Also abbreviated as TIFF. TIF is a
bitmap image format capable of storing multiple images. It is widely used in
scanning, faxing and word processing.

UPC-A The UPC-A barcode is the most common and well-known symbology in
North America. UPC-A encodes 11 digits of numeric data along with a
trailing check digit, for a total of 12 digits of barcode data.

UPC-E The UPC-E barcode is the short form representation of a UPC-A number. It
reduces the data length from 12 digits to 6 digits by compressing extra zeros.

UPS Abbreviation for United Parcel Service, the largest carrier company in the
US.

USPS Abbreviation for U.S. Postal Service.

WMF Acronym for Windows Metafile. WMF is a graphics file format on Microsoft
Windows. WMF is a vector graphics format which stores drawing commands
instead of color information of pixels.

X dimension The nominal width dimension of the narrowest element in the bar code - bar
or space.

128 GLOSSARY

XML Acronym for eXtensible Markup Language. XML refers to a set of open
standards describing data ranging from representation (such as web pages)
to business structure. Unlike HTML, XML does not have a set of predefined
elements. Instead it provides a common method for describe a document
type and the data.

Index
A
About, 77
AutoSize, 26

B
BackColor, 27
BarHeight, 28
BearerBars, 29
BorderColor, 30
BorderStyle, 31
BorderWidth, 32

C
Code25OptionalCheckDigit, 33
Code39OptionalCheckDigit, 34, 88, 89
Code39StartStopChars, 35, 88, 88
Comment, 36
CommentAlignment, 37
CommentFont, 38
CommentMarginBottom, 39
CommentMarginLeft, 39
CommentMarginRight, 39
CommentMarginTop, 39
CommentOnTop, 40
CreateBarcodeObject, 17, 17

D
DataMatrixModuleSize, 41
DataMatrixTargetSizeID, 42, 112
DestoryBarcodeObject, 18
DestroyBarcodeObject, 17

E
ExportImage, 18, 78
ExportImage2, 18
Extended Channel Interpretation, 113, 117

F
File ID, 109, 114
ForeColor, 27

G
Global Label Identification, 108

I
I2of5OptionalCheckDigit, 45
IsBarcodeObjectDemo, 17
ITF-14 (see Interleaved 2 of 5)
ITF25 (see Interleaved 2 of 5)

L
LabelHeight, 46
LabelWidth, 46
Load, 80

M
Macro 5 and 6, 113
Macro PDF417, 109
MaxicodeClass, 47
MaxicodeCountryCode, 49
MaxicodeMode, 48
MaxicodeZipCode, 50
mbxExportImage, 17
mbxLoad, 18
mbxSave, 18
Measurement, 51
Message, 52

N
NarrowBarWidth, 53
NarrowToWideRatio, 54

P
PDF417TruncatedSymbol, 108
PDFAspectRatio, 55
PDFMaxCols, 56
PDFMaxRows, 57
PDFModuleHeight, 58
PDFModuleWidth, 59
PDFSecurityLevel, 60
PDFTruncatedSymbol, 61
Picture, 62

Q
QuietZones, 63

R
RasterImageResolution, 64

S
Save, 81

130 INDEX

Segment Index, 109
Sequence Indicator, 114
ShowCheckDigit, 66
ShowComment, 67
ShowHRText, 66, 68
Special Character Input Method

Code 39 Full ASCII, 89
Code 93, 90

Structural Append, 114, 117
SymbolMarginBottom, 71
SymbolMarginLeft, 71
SymbolMarginRight, 71
SymbolMarginTop, 71
Symbologies

Bookland, 93
Codabar, 90
Code11, 90
Code 128, 94
Code 25, 90
Code 39, 88
Code 39 Full ASCII, 89
Code 39 HIBC, 89
Code 93, 90
DataBar, 102
DataBar Expanded, 102
DataBar Expanded Stacked, 102
DataBar Limited, 102
DataBar Stacked, 102
DataBar Stacked Omnidirectional, 102
DataBar Truncated, 102
EAN-13, 92
EAN-8, 92
EAN Supplements, 92
Interleaved 2 of 5, 105
MaxiCode, 115
MSI/Plessey, 90
PDF 417, 107
POSTNET, 106
UCC/EAN-128, 96
UPC-A, 91
UPC-E, 91
UPC Supplements, 91

Symbology, 69

T
Technical Support, 119
TexAlignment, 72
TextOnTop, 74
Truncated PDF, 108

U
UccEanOptionalCheckDigit, 75

Z
Zip (see POSTNET)
ZoomRatio, 76

	Morovia Barcode DLL 4.0 Reference Manual
	Table of Contents
	Chapter 1. Overview
	Chapter 2. System Requirements
	Chapter 3. Specification
	3.1. Package Contents
	3.2. Symbologies Supported

	Chapter 4. Licensing
	Chapter 5. Fundamentals
	5.1. Design Mode
	5.2. Zooming
	5.3. Working Area
	5.3.1. Bounding Borders
	5.3.2. Symbol Margins
	5.3.3. Symbol Area
	5.3.3.1. Barcode Element
	5.3.3.2. Comment Element

	5.4. Barcode Glossary

	Chapter 6. Working with Low Resolution Devices
	6.1. Problem
	6.2. Magic Numbers
	6.3. Solution
	6.4. Transferring Images

	Chapter 7. Programming Interface
	7.1. General
	7.2. Creating a Barcode Object
	7.3. Modifying Properties
	7.4. Loading/Saving Barcode Object
	7.5. Exporting images
	7.6. Destroying the object
	7.7. Erorr Handling
	7.8. Concurrency Issues
	7.9. Data Type Issues
	7.9.1. Boolean Type
	7.9.2. String Type

	7.10. Using Barcode DLL in a .Net Program

	Chapter 8. Barcode Object Properties and Methods Reference
	8.1. General
	8.1.1. Properties
	8.1.2. Methods
	8.1.3. Deprecated Properties

	8.2. AutoLabelSize Property
	8.3. AutoSize Property
	8.4. BackColor, ForeColor Properties
	8.5. BarHeight Property
	8.6. BearerBars Property
	8.7. BorderColor Property
	8.8. BorderStyle Property
	8.9. BorderWidth Property
	8.10. Code25OptionalCheckDigit Property
	8.11. Code39OptionalCheckDigit Property
	8.12. Code39StartStopChars Property
	8.13. Comment Property
	8.14. CommentAlignment Property
	8.15. CommentFont Property
	8.16. CommentMarginTop, CommentMarginBottom, CommentMarginLeft, CommentMarginRight Properties
	8.17. CommentOnTop Property
	8.18. DataMatrixModuleSize Property
	8.19. DataMatrixTargetSizeID Property
	8.20. Font Property
	8.21. I2of5OptionalCheckDigit Property
	8.22. LabelWidth, LabelHeight Properties
	8.23. MaxicodeClass Property
	8.24. MaxicodeMode Property
	8.25. MaxicodeCountryCode Property
	8.26. MaxicodeZipCode Property
	8.27. Measurement Property
	8.28. Message Property
	8.29. NarrowBarWidth Property
	8.30. NarrowToWideRatio Property
	8.31. PDFAspectRatio Property
	8.32. PDFMaxCols Property
	8.33. PDFMaxRows Property
	8.34. PDFModuleHeight Property
	8.35. PDFModuleWidth Property
	8.36. PDFSecurityLevel Property
	8.37. PDFTruncatedSymbol Property
	8.38. Picture Property
	8.39. QuietZones Property
	8.40. RasterImageResolution Property
	8.41. Rotation Property
	8.42. ShowCheckDigit Property
	8.43. ShowComment Property
	8.44. ShowHRText Property
	8.45. Symbology Property
	8.46. SymbolMarginTop, SymbolMarginBottom, SymbolMarginLeft, SymbolMarginRight Properties
	8.47. TexAlignment Property
	8.48. TextOnTop Property
	8.49. UccEanOptionalCheckDigit Property
	8.50. ZoomRatio Property
	8.51. About Method
	8.52. ExportImage Method
	8.53. Load Method
	8.54. Save Method

	Chapter 9. Error Handling
	9.1. Error Codes

	Chapter 10. Barcode Technologies
	10.1. Introduction
	10.2. Code 39
	10.3. Code 39 Full ASCII
	10.4. Code 39 HIBC
	10.5. Codabar
	10.6. Code 93
	10.7. MSI/Plessey, Code 25 and Code11
	10.8. UPC-A,UPC-E and UPC Supplements
	10.9. EAN-13, EAN-8 and EAN Supplements
	10.10. ISBN/Bookland
	10.11. Code 128
	10.11.1. How Barcode DLL Implements the Code128
	10.11.2. Tilde Codes

	10.12. UCC/EAN-128
	10.12.1. Introduction
	10.12.2. How Barcode DLL Implements UCC/EAN-128
	10.12.3. Auto Check Digit
	10.12.4. Input Format
	10.12.5. Validation
	10.12.6. Non-standard Application

	10.13. DataBar Symbology Family
	10.13.1. What is GTIN?
	10.13.2. Barcode Height
	10.13.3. Human Readable Text
	10.13.4. DataBar Expanded and DataBar Expanded Stacked
	10.13.4.1. Input Format

	10.14. Interleaved 2 of 5 (ITF25)
	10.15. POSTNET
	10.16. PDF 417
	10.16.1. Security Level
	10.16.2. Size Control
	10.16.3. Input Format
	10.16.4. Truncated PDF
	10.16.5. Global Label Identification (GLI)
	10.16.6. Macro PDF417

	10.17. Data Matrix
	10.17.1. Enhanced Feature Support
	10.17.2. Size Control
	10.17.3. Module Size
	10.17.4. Input Format
	10.17.5. Macro 5 and 6
	10.17.6. Extended Channel Interpretation (ECI)
	10.17.7. Structural Append (SA)

	10.18. MaxiCode
	10.18.1. Barcode DLL implementation
	10.18.2. Message Structure
	10.18.3. Input Format
	10.18.4. Extended Channel Interpretation (ECI)
	10.18.5. Structural Append (SA)

	Chapter 11. Technical Support
	Appendix A. Component Software License Agreement
	Glossary
	Index

